Chapter III CONTACT PRINTING ON BROMIDE PAPER

Previous

Contents

Nothing more than will be found in an ordinary dark-room will be found necessary in bromide printing by contact, unless it be some arrangement for determining readily the distance of the negative from the source of light. For this purpose and with an oil-lamp, use a board a foot wide and about three feet long placed on the developing bench against the base of the dark-room lamp. It should be marked with black lines six inches apart. See Fig. 2.

A circle next to a strip that has markings 1, 2, 3Greater uniformity in lighting will be gained if a piece of white cardboard be placed immediately behind the flame. Some lamps have reflectors, in which case the card is unnecessary, provided that they reflect the light uniformly; otherwise such reflectors are worse than useless.

Having arranged the needful apparatus to our satisfaction, the last preparatory step before manipulation is the making up of a developer. Almost any of the modern developers (pyro excepted) will give good results with bromide paper. In every package of paper will be found the developers advised by the manufacturer of the paper used. Invariably there is among these a formula for ferrous oxalate developer. This is probably the best of all developers for pure black tones, but I cannot advise the novice to take it up in the early stages of his work with bromide paper.

When this developer is used an acid clearing bath is necessary, and this invites complications which may be disastrous to the prints. When experience has been gained, and a large number of prints are to be made at one time, it will be found advantageous as working longer with greater efficiency and more uniformity than some of the other developers. It is troublesome to prepare and does not keep well, apart from which there is the disadvantage that it does not permit of control in development in as large a measure as other developers.

A reliable metol and hydroquinone formula is as follows: Thoroughly dissolve metol, ¼ ounce; hydroquinone, ¼ ounce; in water, 80 ounces; add sulphite of soda (cryst.), 4 ounces; and carbonate of soda (cryst.), 2½ ounces. Bottled in 4-ounce vials and well corked, this developer retains its working power indefinitely. For normal exposures I take 2 ounces of the above and add to it 2 ounces of water. This will suffice for the development of three 8 × 10 sheets of paper, or their equivalent in smaller sheets. It is not wise to attempt to make it do more, as greenish tones will result. For the same reason, contrary to common opinion, I do not advise the addition of potassium bromide to the developer. It does not improve the developer, and may do harm.

An excellent developer which must be used freshly mixed, and may be made up in a moment, is as follows: Take 1½ ounces of a 25 per cent solution of sodium sulphite; dry amidol, 30 grains; 5 to 10 drops of a 10 per cent solution of potassium bromide, and dilute with 4½ ounces of water. A supply of new developer should be added as this is seen to become exhausted.

Other developing formulae could be given, but these two will be found to fill all requirements if properly compounded and intelligently used.

The greatest difficulty in developing bromide paper is to get rich black tones when desired, but this can be completely overcome by using entirely fresh developer from time to time, and never over-working the developer, whatever it may be. As compared with the paper, developer is cheap, and it is poor economy to save on the latter.

Except in rare instances the developer is better without any modifications whatever. In case of over-exposure, either general or partial, the developer after having been diluted as stated should be again diluted with its bulk of water. This gives blacker tones and more depth and life to the shadows. When through inadvertence we under-expose a print it may frequently be saved after partial development in the weak solution by flooding with a strong undiluted developer.

The temperature of the developer is of the greatest importance. In summer the aim should be to keep it approximately at 65 degrees Fahr., in winter, 70 degrees, but it should never be allowed to go over the latter. This can readily be accomplished by placing the graduate in a receptacle containing ice-water in summer or hot water in winter.

The paper is first opened at a safe distance from the dark-room light, and it is well at first to cut up one sheet into several slips to use as test-strips. If any difficulty is found in determining which is the sensitive side, it will be well to throw a piece of the paper on a plane surface when it will be seen that it has a slight tendency to curl. The concave is the sensitive side. Taking a standard negative we first take one of the test-slips and place it upon the negative so that it covers a portion containing both high lights and shadows. With an oil-lamp having a 1-inch burner, expose the test-strip behind the negative in the printing frame at one foot for ten seconds. Close the lamp and flood the exposed strip with the developer. The image should appear in a few seconds, and if properly exposed development will be completed in from one to two minutes, usually one. Rinse for a moment, and place the strip in a fixing bath made up by dissolving 3 ounces of hypo in 16 ounces of water. After a few moments examine the strip in full light, and see whether the contrasts are right. If so, expose a full sheet of paper, this time rinsing the exposed sheet before development to avoid the formation of air-bubbles. If the contrasts are too great try a strip at six inches from the light and two and a half seconds exposure. If still too great, use a stronger light or try a longer exposure and use a very dilute developer. If still too great the negative is hopeless and should be reduced unless dodging will help it, as set out further on.It will be noticed that this method calls for a one-minute development. This is desirable for several reasons: first, because it gives a unit and assists us in determining the correct exposure of other negatives, and second, because it is a comparatively short development, and yet gives sufficient time after the image has acquired the proper depth to pour off the developer and flush with water, thus stopping development. It also leaves sufficient margin in the event of over- or under-exposure. With one minute as the unit, over-exposure will result in a fully developed image in, say, thirty seconds. This print we could save; but if our unit were thirty seconds it would be extremely difficult to save a print which had completed development in fifteen seconds. The chances are that the development would go on to a ruinous extent before we could pour off the developer and flood the print, or that it would go on even after the water was poured on it. Moreover, in case of under-exposure, two minutes would not be so very tiresome, but four minutes would, besides which we would risk straining the print by such prolonged development. While I am not prepared to assert it as a rule, yet it has been my experience that the time of development varies almost inversely with the length of exposure; so that if the test-strip concludes development in half a minute with ten seconds exposure, I give the next five seconds exposure in the expectation that it will take a minute to develop. This assists greatly in lessening the number of test-strips required to ascertain the correct exposure of a given negative.

Should we wish to see a proof before the negative is dry, it is taken from the fixing bath and well rinsed, though not necessarily thoroughly washed. It is then placed face up in a tray of water, on which we place face down a sheet of bromide paper. The two are removed together and squeezed lightly into contact to remove air bubbles. The back of the negative is then wiped to remove superfluous water, and an exposure of several times the normal given, preferably the normal exposure at half the standard distance from the light. The paper is then removed and developed as usual. In this way it is possible to show a print in fifteen or twenty minutes after the exposure of the plate was made.

The purpose of the rinsing before development is to avoid the possibility of air-bells. The paper should be rinsed in cold water, as warmish water will cause air-bells instead of preventing them. This rinsing can be dispensed with if thought desirable. The rinsing after development is for the purpose of stopping development immediately, and also in order that the prints may not go into the fixing bath full of developer, as staining would be likely to result in such case. With the iron oxalate developer an acid rinsing bath is necessary, but it is not necessary with any of the other developers.

The fixing is important, as upon this depends in a large measure the permanence of the prints. The bath should be freshly made up, 3 ounces of hyposulphite of soda to 16 ounces of water. Prints are placed in this bath face down, and one under, instead of on top of another. The tray should be occasionally rocked. With a fresh bath prints will fix in ten minutes, but where many prints are made at one time it will be well to use a second fixing bath. The emulsion of an unfixed print will appear a yellowish tinge in the unfixed portions when examined by transmitted light; but this is not an easy or certain test. It is better to make absolutely certain of thorough fixing by continued immersion, occasional rocking and, where many prints are made, a second bath. The fixing bath should not be allowed to get too warm in hot weather. Blistering, staining and frilling will result in such a case, and I have known a print which was left in a warm fixing bath for an hour or more to be reduced beyond redemption. With freshly made hypo baths at a suitable temperature there is absolutely no danger of the paper frilling or blistering.

The final washing must be thorough, as the hypo is difficult to eliminate from both the emulsion and the paper. Care must be taken to see that the prints are well separated while washing. This ensures uniform washing.

It frequently happens that a negative may require more or less dodging in printing. With bromide paper this is particularly easy. We will take the simple case of a negative with dense sky which will not print out in the ordinary way. All that we need in this case is a piece of paper cut roughly to the sky line and kept moving during part of the exposure over the part which is to be held back. If necessary, cut down the light in order to prolong the exposure, or expose at a greater distance from the light. One or more test-strips will be required for this purpose in order to ascertain the relative times of exposure. A modification of this method is when a small portion of the negative only needs extra printing—a face or hand for instance. Here we take a piece of paper a little larger than the negative and cut a small hole in it, moving it in front of the light so as to throw the latter only upon the portions needing the extra printing. Still another modification is where a portion only needs holding back. Here we use a small piece of paper or cardboard stuck on a knitting needle, moving the latter so that it will not intercept the light too long at one place.

In all these and similar instances which will occur to the reader, the dodging should be done during the first part of the exposure. The subsequent exposure seems to obliterate traces of such dodging better than when it is done at the end of the exposure, just as in cloud-printing better results are achieved by printing the sky first and the foreground afterward.

It is quite possible to make bromide negatives in the camera. They have their advantages in classes of work not requiring the finest definition, are much lighter, cheaper, more easily stored and less liable to breakage or other mishaps. They are best made on a thin, smooth paper, a soft paper being better than the hard. They are placed in the plate-holder by means of the ordinary cut film holder. The exposure required is ascertained by a trial or two, but roughly speaking is about one-twentieth that of a rapid plate. After development in the usual way—it being carried only a little further than usual—and after fixing, washing and drying, the paper negative can be spotted or retouched, after which it is waxed.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page