TRANSFER OF HEAT IN SPACE. We now turn our attention,” said Mr. Wilton, “to a new theme. In the vicissitudes of day and night and of summer and winter heat is transferred in time. We now are to look at the arrangements by which heat is transferred in space. But since the transfer of heat in space requires more or less of time, the means employed are such as suffice to accomplish both objects. Heat is treasured up and carried away to distant regions, and delivered up for use as occasion demands. “In a previous lesson the inclination of the earth’s axis was spoken of. By this means the northern hemisphere of the earth is turned somewhat toward the sun during one half of the year, and receives a correspondingly larger portion of heat, while during the other half of the year the southern hemisphere is turned toward “The change of seasons is manifestly designed for the welfare of man. Along with the genial warmth of summer, fruits and grains and the comforts of life are carried far toward the poles, into regions which otherwise would be desolate with perpetual frost. But these extremes need to be softened; otherwise, the violence of the changes would prove destructive rather than beneficent. The severity of these annual changes of temperature is ameliorated by some of the grandest movements and arrangements upon our globe. These arrangements we have in a very imperfect way already examined. “But there are other inequalities of temperature besides those of day and night, summer and winter. Passing from the equator toward the poles, every degree of the earth’s surface passed over causes the sun to sink one degree from the zenith toward the horizon, and gives a corresponding lower temperature, till within the polar circles for a part of the year the sun is entirely hidden and winter reigns without a rival. The temperature of the sea differs from “I do not need to tell you that while we in the northern hemisphere are enjoying the warmth of summer the southern hemisphere is enduring the severities of winter, and in turn, when winter comes to us, summer smiles upon the nations that live south of the equator. You also remember that the orbit of the earth is not an exact circle, but an ellipse, that is, what is sometimes called in common language a long circle. For this reason the earth is three millions of miles nearer the sun in one part of its orbit than when in another part. Can you tell us, Peter, at what season of year the earth is nearer the sun?” “In midwinter, or about the first of January. “Yes, one is reminded by it of the humorous argument that the sun must emit cold instead of heat, because when we are at the point of the earth’s orbit which is nearest the sun it is winter, and the higher one ascends upon mountains toward the sun, the colder he finds it. But this nearness of the sun while south of the equator would naturally give the southern hemisphere a warmer summer than the northern. For this there is a beautiful compensation. The earth passes through her orbit more rapidly when nearer the sun, and that half of her orbit is also smaller, so that, as the result of this, the sun remains north of the equator about eight days longer than in the southern hemisphere. The sun is nearer while in the southern hemisphere, but the summer is shorter. That which the southern hemisphere gains in distance it loses in time, and that which the northern loses in distance it gains in time. “The nearness of the sun while south of the equator, the shortness of the summer, and the “In connection with this we may notice still another compensation in the elevation of the lands by which the burning heat of the torrid zone and the rigors of the colder zones are more or less diminished. The greater the elevation of any region of country, the cooler must be its climate. Physical geographers like Baron von Humboldt and Guyot have made calculations “As a general statement, the torrid zone receives an excess of heat, while the frigid zones receive too little, and the temperate zones, lying between, receive, at different times and places, sometimes too little and sometimes too much. The providential arrangements for equalizing temperature are, then, chiefly arrangements for conveying heat from the overheated tropical regions and scattering it over the temperate and polar regions. First among these means we will notice the trade-winds, or, as for the sake of brevity they are often called, ‘the trades.’ Will you tell us, Samuel, how winds are caused?” “The air is heated at some place and expands; it becomes lighter and rises, while the colder air around rushes in to fill its place.” “You use the words which are commonly employed in explaining the origin of winds, and very likely your idea is right, but the language needs a little correction. The warm air does not rise of its own accord, so to speak, but is pressed upward. The warm air is expanded; it presses outward and upward; the same weight of warm air occupies more space than cold air; “The atmosphere is commonly believed to be forty-five or fifty miles in height, though some men have estimated its height as very much less than this, while others believe it to be six or seven hundred miles in height. Are we to suppose that the column of heated air reaches to the top of the atmosphere?” “I think not,” answered Mr. Hume. “The rarefaction of the lower part of the column renders the whole column lighter than the air around, and the warm air, as we know by the movements of the clouds, after rising a little way, spreads off in every direction, forming upper currents corresponding to the currents below, but moving in the opposite direction.” “Do you imagine, Peter, that the upper and lower currents of air, moving in opposite directions, come sharply together, the one sliding against the other?” “I think not,” said Peter. “Supposing, then, as is certainly true, that a stratum of still air lies between the upper and lower winds, does not that explain how certain clouds might be standing still while the others were moving?” “I might have thought of that myself.” “But how does this carry heat from the warmer region to the colder regions around?” asked Ansel. “I see how the colder air coming in would cool the warm region, and how the warm ascending air would carry away the excess of heat, but how do the cooler regions get the advantage of this heat?” “That is just what I was on the point of “I remember that if air be rarefied by removing pressure from it, its temperature falls: I think you said that a part of its sensible heat becomes latent; and if air be compressed, its temperature rises. I have seen experiments with the air pump and condenser to prove this.” “That principle explains the transfer of heat by winds. If the heated air rose to the upper regions, and there radiated its heat, nothing would be gained; the heat would be simply radiated into space. But as the warm air rises pressure is more and more removed from it; it expands; its sensible heat becomes latent and is thus kept from radiation; its temperature falls, but not from loss of heat. This rarefied air forms the upper current flowing away from the heated centre. In due time this air must come to the surface of the earth again. Whenever this takes place the air is brought again under pressure; it is compressed, and its latent heat becomes again sensible. Heat is thus transferred from the warmer region to the colder in a latent “They are regular winds blowing from a little north and south of the tropics of Cancer and Capricorn south-west and north-west toward the equator.” “These winds are called trade-winds,” continued Mr. Wilton, “on account of their great advantage to trade or commerce. The regular and steady sweep of these winds bears the merchantmen rapidly and safely on their way. The formation of ‘the trades’ is easily explained. By the intense heat of the sun under the equator the air is greatly expanded and rarefied; the heated air rises along the whole line of the equator; from both sides the cooler air presses in, is heated, and rises; thus steady winds are formed from the tropics, or a little beyond the tropics, toward the equator. If the earth had no rotation upon its axis, these winds would blow directly toward the equator, exactly south and north. The rotation of the earth gives the trade-winds their oblique, south-west and north-west direction. Suppose that a single particle of air at the tropic of Cancer starts upon its journey toward the “I know of no method, except to estimate the amount of heat necessary to raise that flood of air which pours in from the temperate zones to the equatorial heat. That immense amount of heat must, nearly all of it, be carried away to the temperate regions.” “This is the general explanation of the trade-winds. You must understand, however, that, in certain regions and under certain conditions, the trades are liable to interruption or change of direction. Desert regions within or near the tropics give rise to local winds which overpower the trades. In Southern Asia, while the sun is north of the equator, the land becomes so much hotter than the sea under the equator that the trade-wind is overpowered and reversed, forming a wind which blows to the north-east instead of the south-west. But this is only a beautiful “The next great agency for equalizing temperature between the torrid and temperature zones is the formation and condensation of vapor. This comes in here, because it depends for its efficiency upon the agency of winds. More than once this method of conveying heat from place to place has been hinted at, but deferred till we came to the proper place to speak of winds. “The trade-winds, passing over from a colder to a warmer climate, are constantly accumulating vapor. Under the equator the annual evaporation from the surface of the ocean is set down at fifteen feet, or half an inch daily. The formation of this vapor consumes heat which would boil more than eighty feet of ice water. The vapor thus formed is borne “Vapor gathered from sea or land is everywhere exerting this equalizing influence upon “The sum-total of heat transferred by this agency is too great for comprehension. Look at the Amazon rolling to the ocean a flood broad as an arm of the sea. That great river is brought from the Atlantic Ocean on the shoulders of the trade-wind. As the vapor is slowly lifted by the “We may form a conception of the amount of heat transferred by the agency of vapor by estimating the amount of heat-force required to “I see, however, that our time is nearly exhausted, and I wish before closing to revert to that more important theme upon which I spoke this forenoon. I do not know how the truths preached interested or affected you, nor do I now wish to have you tell me. I wish only to say that, as the sermon was preached at your request, I hope it proved applicable to you, and that you will give the truths presented earnest attention. Consider them well, and make your conclusions known this evening.” The conclusion which the evening made known, you, reader, have already learned. |