CHAPTER X. PHYSIOLOGICAL ANATOMY. SECRETION.

Previous

The term Secretion, in its broadest sense, is applied to that process by which substances are separated from the blood, either for the reparation of the tissues or for excretion. In the animal kingdom this process is less complicated than in vegetables. In the former it is really a separation of nutritive material from the blood. The process, when effected for the removal of effete matter, is, in a measure, chemical, and accordingly the change is greater.

Three elementary constituents are observed in secretory organs: the cells, a basement membrane, and the blood-vessels. Obviously, the most essential part is the cell.

The physical condition necessary for the healthy action of the secretory organs is a copious supply of blood, in which the nutritive materials are abundant. The nervous system also influences the process of secretion to a great extent. Intense emotion will produce tears, and the sight of some favorite fruit will generally increase the flow of saliva.

The process of secretion depends upon the anatomical and chemical constitution of the cell-tissues. The principal secretions are (1), Perspiration; (2), Tears; (3), Sebaceous matter; (4), Mucus; (5), Saliva; (6), Gastric juice; (7), Intestinal juice; (8), Pancreatic juice; (9), Bile; (10), Milk.

Perspiration is a watery fluid secreted in minute glands, which are situated in every part of the skin, but are more numerous on the anterior surfaces of the body. Long thread-like tubes, only 1/100th of an inch in diameter, lined with epithelium, penetrate the skin, and terminate in rounded coils, enveloped by a net-work of capillaries, which supply the secretory glands with blood. It is estimated by Krause that the entire number of perspiratory glands is two million three hundred and eighty-one thousand two hundred and forty-eight, and the length of each glandular coil being 1/16 of an inch, we may estimate the length of tubing to be not less than two miles and a third. This secretion has a specific gravity of 1003.5, and, according to Dr. Dalton, is composed of

Water, 995.50
Chloride of Sodium, 2.23
Chloride of Potassium, 0.24
Sulphate of Soda and Potassa, 0.01
Salts of organic acids, with Soda and Potassa, 2.02
————
1000.00

Traces of organic matter, mingled with a free volatile acid, are also found in the perspiration. It is the acid which imparts to this secretion its peculiar odor, and acid reaction. The process of its secretion is continuous, but, like all bodily functions, it is subject to influences which augment or retard its activity. If, as is usually the case when the body is in a state of repose, evaporation prevents its appearance in the liquid form, it is called invisible or insensible perspiration. When there is unusual muscular activity, it collects upon the skin, and is known as sensible perspiration. This secretion performs an important office in the animal economy, by maintaining the internal temperature at about 100° Fahr. Even in the Arctic regions, where the explorer has to adapt himself to a temperature of 40° to 80° below zero, the generation of heat in the body prevents the internal temperature from falling below this standard. On the contrary, if the circulation is quickened by muscular exertion, the warmer blood flowing from the internal organs into the capillaries, raises the temperature of the skin, secretion is augmented, the moisture exudes from the pores, and perceptible evaporation begins. A large portion of the animal heat is thrown off in this process, and the temperature of the skin is reduced. A very warm, dry atmosphere can be borne with impunity but if moisture is introduced, evaporation ceases, and the life of the animal is endangered. Persons have been known to remain in a temperature of about 300° Fahr. for some minutes without unpleasant effects. Three conditions may be assigned as effective causes in retarding or augmenting this cutaneous secretion, variations in the temperature of the atmosphere, muscular activity, and influences which affect the nerves. The emotions exert a remarkable influence upon the action of the perspiratory glands. Intense fear causes great drops of perspiration to accumulate on the skin, while the salivary glands remain inactive.

Tears. The lachrymal glands are small lobular organs, situated at the outer and upper orbit of the eye, and have from six to eight ducts, which open upon the conjunctiva, between the eyelid and its inner fold. This secretion is an alkaline, watery fluid. According to Dr. Dalton, its composition is as follows:

Water, 882.0
Albuminous matter, 5.0
Chloride of Sodium, 13.0
Mineral Salts, a trace,
————
1000.0

The function of this secretion is to preserve the brilliancy of the eye. The tears are spread over this organ by the reflex movement of the eyelid, called winking, and then collected in the puncta lachrymalia and discharged into the nasal passage. This process is constant during life. The effect of its repression is seen in the dim appearance of the eye after death. Grief or excessive laughter usually excite these glands until there is an overflow.

Sebaceous Matter. Three varieties of this secretion are found in the body. A product of the sebaceous glands of the skin is found in those parts of the body which are covered with hairs; also, on the face and the external surface of the organs of generation. The sebaceous glands consist of a group of flask-shaped cavities, opening into a common excretory duct. Their secretion serves to lubricate the hair and soften the skin. The ceruminous glands of the external auditory meatus, or outer opening of the ear, are long tubes terminating in a glandular coil, within which is secreted the glutinous matter of the ear. This secretion serves the double purpose of moistening the outer surface of the membrana tympani, or ear-drum, and, by its strong odor, of preventing the intrusion of insects. The Meibomian glands are arranged in the form of clusters along the excretory duct, which opens just behind the roots of the eyelashes. The oily nature of this secretion prevents the tears, when not stimulated by emotion, from overflowing the lachrymal canal.

Mucus. The mucous membranes are provided with minute glands which secrete a viscid, gelatinous matter, called mucus. The peculiar animal matter which it contains is termed mucosin. These glands are most numerous in the Pharynx, Esophagus, Trachea, Bronchia, Vagina and Urethra. They consist of a group of secreting sacs, terminating at one extremity in a closed tube, while the other opens into a common duct. The mucus varies in composition in different parts of the body; but in all, it contains a small portion of insoluble animal matter. Its functions are threefold. It lubricates the membranes, prevents their injury, and facilitates the passage of food through the alimentary canal.

Saliva. This term is given to the first of the digestive fluids, which is secreted in the glands of the mouth. It is a viscid, alkaline liquid, with a specific gravity of about 1005. If allowed to stand, a whitish precipitate is formed. Examinations with the microscope show it to be composed of minute, granular cells and oil globules, mingled with numerous scales of epithelium. According to Bidder and Schmidt, the composition of saliva is as follows:

Water, 995.16
Organic matter, 1.34
Sulpho-cyanide of Potassium, 0.06
Phosphates of Sodium, Calcium and Magnesium, .98
Chlorides of Sodium and Potassium, .84
Mixture of Epithelium, 1.62
1000.00

Two kinds of organic matter are present in the saliva; one, termed ptyalin, imparts to the saliva its viscidity, and it obtained from the secretions of the parotid, submaxillary and sublingual glands; another, which is not glutinous, is distinguished by the property of coagulating when subjected to heat. The saliva is composed of four elementary secretions, derived respectively, from the mucous follicles of the mouth, and the parotid, the submaxillary, and the sublingual glands. The process of its secretion is constant, but is greatly augmented by the contact of food with the lining membrane. The saliva serves to moisten the triturated food, facilitate its passage, and has the property of converting starch into sugar; but the latter quality is counteracted by the action of the gastric juice of the stomach.

Gastric Juice. The minute tubes, or follicles, situated in the mucous membrane of the stomach, secrete a colorless, acid liquid, termed the gastric juice. This fluid appears to consist of little more than water, containing a few saline matters in solution, and a small quantity of free hydrochloric acid, which gives it an acid reaction. In addition to these, however, it contains a small quantity of a peculiar organic substance, termed pepsin, which in chemical composition, is very similar to ptyalin, although it is very different in its effects. When food is introduced into the stomach, the peristaltic contractions of that organ roll it about, and mingle it with the gastric juice, which disintegrates the connective tissue, and converts the albuminous portions into the substance called chyme, which is about the consistency of pea-soup, and which is readily absorbed through the animal membranes into the blood of the delicate and numerous vessels of the stomach, whence it is conveyed to the portal vein and to the liver. The secretion of the gastric juice is influenced by nervous conditions. Excess of joy or grief effectually retard or even arrest its flow.

Intestinal Juice. In the small intestine, a secretion is found which is termed the intestinal juice. It is the product of two classes of glands situated in the mucous membrane, and termed respectively, the follicles of Lieberkuhn and the glands of Brunner. The former consist of numerous small tubes, lined with epithelium, which secrete by far the greater portion of this fluid. The latter are clusters of round follicles opening into a common excretory duct. These sacs are composed of delicate, membranous tissue, having numerous nuclei on their walls. The difficulty of obtaining this juice for experiment is obvious, and therefore its chemical composition and physical properties are not known. The intestinal juice resembles the secretion of the mucous follicles of the mouth, being colorless, vitreous in appearance, and having an alkaline reaction.

Pancreatic Juice. This is a colorless fluid, secreted in a lobular gland which is situated behind the stomach, and runs transversely from the spleen across the vertebral column to the duodenum. The most important constituent of the pancreatic juice is an organic substance, termed pancreatin.

The Bile. The blood which is collected by the veins of the stomach, pancreas, spleen, and intestines, is discharged into a large trunk called the portal vein, which enters the liver. This organ also receives arterial blood from a vessel called the hepatic artery, which is given off from the aorta below the diaphragm. If the branches of the portal vein and hepatic artery be traced into the substance of the liver, they will be found to accompany one another, and to subdivide, becoming smaller and smaller. Finally, the portal vein and hepatic artery will be found to terminate in capillaries which permeate the smallest perceptible subdivisions of the liver substance, which are polygonal masses of not more than one-tenth of an inch in diameter, called the lobules. Every lobule rests upon one of the ramifications of a great vessel termed the hepatic vein, which empties into the inferior vena cava. There is also a vessel termed the hepatic duct leading from the liver, the minute subdivisions of which penetrate every portion of the substance of that organ. Connected with the hepatic duct, is the duct of a large oval sac, called the gall-bladder.

Each lobule of the liver is composed of minute cellular bodies known as the hepatic cells. It is supposed that in these cells the blood is deprived of certain materials which are converted into bile. This secretion is a glutinous fluid, varying in color from a dark golden brown to a bright yellow, has a specific gravity ranging from 1018 to 1036, and a slightly alkaline reaction. When agitated, it has a frothy appearance. Physiologists have experienced much difficulty in studying the character of this secretion from the instability of its constituents when subjected to chemical examination.

Illustration: Fig. 52. Section of the Liver, showing the ramifications of the portal vein.
Fig. 52. Section of the Liver, showing the ramifications of the portal vein. 1. Twig of portal vein. 2, 2', 2", 2"'. Interlobular vein. 3, 3', 3", Lobules.

Biliverdin is an organic substance peculiar to the bile, which imparts to that secretion its color. When this constituent is re-absorbed by the blood and circulates through the tissues, the skin assumes a bright yellow hue, causing what is known as the jaundice. Cholesterin is an inflammable crystallizable substance soluble in alcohol or ether. It is found in the spleen and all the nervous tissues. It is highly probable that it exists in the blood, in some state or combination, and assumes a crystalline form only when acted upon by other substances or elements. Two other constituents, more important than either of the above, are collectively termed biliary salts. These elements were discovered in 1848, by Strecker, who termed them glycocholate and taurocholate of soda. Both are crystalline, resinous substances, and, although resembling each other in many respects, the chemist may distinguish them by their reaction, for both yield a precipitate if treated with subacetate of lead, but only the glycocholate will give a precipitate with acetate of lead. In testing for biliary substances, the most satisfactory method is the one proposed by Pettenkoffer. A solution of cane-sugar, one part of sugar to four parts of water, is mixed with the suspected substance. Dilute sulphuric acid is then added until a white precipitate falls, which is re-dissolved in an excess of the acid. On the addition of more sulphuric acid, it becomes opalescent, and passes through the successive hues of scarlet, lake, and a rich purple. Careful experiments have proved that it is a constant secretion; but its flow is mere abundant during digestion. During the passage through the intestines it disappears. It is not eliminated, and Pettenkoffer's test has failed to detect its existence in the portal vein. These facts lead physiologists to the conclusion, that it undergoes some transformation in the intestines and is re-absorbed.

After digestion has been going on in the stomach for some time, the semi-digested food, in the form of chyme, begins to pass through the pyloric orifice of the stomach into the duodenum, or upper portion of the small intestine. Here it encounters the intestinal juice, pancreatic juice, and the bile, the secretion of all of which is stimulated by the presence of food in the alimentary tract. These fluids, mingling with the chyme, give it an alkaline reaction, and convert it into chyle. The transformation of starch into sugar, which is almost, if not entirely, suspended while the food remains in the stomach, owing to the acidity of the chyme, is resumed in the duodenum, the acid of the chyme, being neutralized by the alkaline secretions there encountered.

Late researches have demonstrated that the pancreatic juice exerts a powerful effect on albuminous matters, not unlike that of the gastric juice.

Thus, it seems that while in the mouth only starchy, and while in the stomach only albuminous substances are digested, in the small intestine all kinds of food materials, starchy, albuminoid, fatty and mineral, are either completely dissolved, or minutely subdivided, and so prepared that they may be readily absorbed through the animal membranes into the vessels.

Milk. The milk is a white, opaque fluid, secreted in the lacteal glands of the female, in the mammalia. These glands consist of numerous follicles, grouped around an excretory duct, which unites with similar ducts coming from other lobules. By successive unions, they form large branches, termed the lactiferous ducts, which open by ten to fourteen minute orifices on the extremity of the nipple. The most important constituent of milk is casein; it also contains oily and saccharine substances. This secretion, more than any other, as influenced by nervous conditions. A mother's bosom will fill with milk at the thought of her infant child. Milk is sometimes poisoned by a fit of ill-temper, and the infant made sick and occasionally thrown into convulsions, which in some instances prove fatal. Sir Astley Cooper mentions two cases in which terror instantaneously and permanently arrested this secretion. It is also affected by the food and drink. Malt liquors and other mild alcoholic beverages temporarily increase the amount of the secretion, and may, in rare instances, have a beneficial effect upon the mother. They sometimes affect the child, however, and their use is not to be recommended unless the mother is extremely debilitated, and there is a deficiency of milk.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page