CHAPTER VI. PHYSICAL AND VITAL PROPERTIES OF THE BLOOD.

Previous

Illustration: Fig. 38. Red corpuscles of human blood,
Fig. 38. Red corpuscles of human blood, represented at a, as they are seen when rather beyond the focus of the microscope; and at b as they appear when, within the focus. Magnified 400 diameters.

Illustration: Fig. 39. Development of human lymph and chyle-corpuscles into red corpuscles of blood.
Fig. 39. Development of human lymph and chyle-corpuscles into red corpuscles of blood. A. A lymph, or white blood-corpuscle. B. The same in process of conversion into a red corpuscle. C. A lymph-corpuscle with the cell-wall raised up around it by the action of water. D. A lymph-corpuscle, from which the granules have almost disappeared. E. A lymph-corpuscle, acquiring color; a single granule, like a nucleus, remains. F. A red corpuscle fully developed.

Blood is the animal fluid by which the tissues of the body are nourished. This pre-eminently vital fluid permeates every organ, distributes nutritive material to every texture, is essentially modified by respiration, and, finally, is the source of every secretion and excretion. Blood has four constituents: Fibrin, Albumen, Salts (which elements, in solution, form the liquor sanguinis), and the Corpuscles. Microscopical examination shows that the corpuscles are of two kinds, known as the red and the white, the former being by far the more abundant. They are circular in form and have a smooth exterior, and are on an average 1/3200 part of an inch in diameter, and are about one-fourth of that in thickness. Hence more than ten millions of them may lie on a space an inch square. If spread out in thin layers and subjected to transmitted light, they present a slightly yellowish color, but when crowded together and viewed by refracted light, exhibit a deep red color. These blood-corpuscles have been termed discs, and are not, as some have supposed, solid material, but are very nearly fluid. The red corpuscles although [pg 54]subjected to continual movement, have a tendency to approach one another, and when their flattened surfaces come in contact, so firmly do they adhere that they change their shape rather than submit to a separation. If separated, however, they return to their usual form. The colorless corpuscles are larger than the red and differ from them in being extremely irregular in their shape, and in their tendency to adhere to a smooth surface, while the red corpuscles float about and tumble over one another. They are chiefly remarkable for their continual variation in form. The shape of the red corpuscles is only altered by external influences, but the white are constantly undergoing alterations, the result of changes taking place within their own substance. When diluted with water and placed under the microscope they are found to consist of a spheroidal sac, containing a clear or granular fluid and a spheroidal vesicle, which is termed the nucleus. They have been regarded by some physiologists as identical with those of the lymph and chyle. Dr. Carpenter believes that the function of these cells is to convert albumen into fibrin, by the simple process of cell-growth. It is generally believed that the red corpuscles are derived in some way from the colorless. It is supposed that the red corpuscle is merely the nucleus of a colorless corpuscle enlarged, flattened, colored and liberated by the bursting of the wall of its cell. When blood is taken from an artery and allowed to remain at rest, it separates into two parts: a solid mass, called the clot, largely composed of fibrin; and a fluid known as the serum, in which [pg 55]the clot is suspended. This process is termed coagulation. The serum, mostly composed of albumen, is a transparent, straw-colored fluid, having the odor and taste of blood. The whole quantity of blood in the body is estimated on an average to be about one-ninth of its entire weight. The distinctions between the arterial and the venous blood are marked, since in the arterial system the blood is uniformly bright red, and in the venous of a very dark red color The blood-corpuscles contain both oxygen and carbonic acid in solution. When carbonic acid predominates, the blood is dark red; when oxygen, scarlet. In the lungs, the corpuscles give up carbonic acid, and absorb a fresh supply of oxygen, while in the general circulation the oxygen disappears in the process of tissue transformation, and is replaced, in the venous blood, by carbonic acid. The nutritive portions of food are converted into a homogeneous fluid, which pervades every part of the body, is the basis of every tissue, and which is termed the blood. This varies in color and composition in different animals. In the polyp the nutritive fluid is known as chyme, in many mollusks, as well as articulates, it is called chyle, but in vertebrates, it is more highly organized and is called blood. In all the higher animal types it is of a red color, although redness is not one of its essential qualities. Some tribes of animals possess true blood, which is not red; thus the blood of the insect is colorless and transparent; that of the reptile yellowish; in the fish the principle part is without color, but the blood of the bird is deep red. The blood of the mammalia is of a bright scarlet hue. The temperature of the blood varies in different species, as well as in animals of the same species under different physiological conditions; for this reason, some animals are called cold-blooded. Disease also modifies the temperature of the blood; thus in fevers it is generally increased, but in cholera greatly diminished. The blood has been aptly termed the "vital fluid," since there is a constant flow from the heart to the tissues and organs of the body, and a continual return after it has circulated through these parts. Its presence in every part of the body is one of the essential conditions of animal life, and is effected by a special set of organs, called the circulatory organs.

[pg 56]


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page