CHAPTER IV. PHYSIOLOGICAL ANATOMY. THE DIGESTIVE ORGANS.

Previous

Digestion signifies the act of separating or distributing, hence its application to the process by which food is made available for nutritive purposes. The organs of digestion are the Mouth, Teeth, Tongue, Salivary Glands, Pharynx, Esophagus, the Stomach and the Intestines, with their glands, the Liver, Pancreas, Lacteals, and the Thoracic Duct.

Illustration: Fig. 26. A view of the lower jaw.
Fig. 26. A view of the lower jaw. 1. The body. 2, 2. Rami, or branches. 3, 3. Processes of the lower jaw. m. Molar teeth. b. Bicuspids, c. Cuspids. i. Incisors.

The Mouth is an irregular cavity, situated between the upper and the lower jaw, and contains the organs of mastication. It is bounded by the lips in front, by the cheeks at the sides, by the roof of the mouth and teeth of the upper jaw above, and behind and beneath by the teeth of the lower jaw, soft parts, and palate. The soft palate is a sort of pendulum attached only at one of its extremities, while the other involuntarily opens and closes the passage from the mouth to the pharynx. The interior of the mouth, as well as other portions of the alimentary canal, is lined with a delicate tissue, called mucous membrane.

The Teeth are firmly inserted in the alveoli or sockets, of the upper and the lower jaw. The first set, twenty in number, are temporary, and appear during infancy. They are replaced by permanent teeth, of which there are sixteen in each jaw; four incisors, or front teeth, four cuspids, or eye teeth, four bicuspids, or grinders, and four molars, or large grinders. Each tooth is divided into the crown, body, and root. The crown is the grinding surface; the body, the part projecting from the jaw, is the seat of sensation and nutrition; the root is that portion of the tooth which is inserted in the alveolus. The teeth are composed of dentine, or ivory, and enamel. The ivory forms the greater portion of the body and root, while the enamel covers the exposed surface. The small white cords communicating with the teeth are the nerves.

The Tongue is a flat oval organ, the base of which is attached to the os hyoides, while the apex, the most sensitive part of the body, is free. Its surface is covered with a membrane, which, at the sides and lower part, is continuous with the lining of the mouth. On the lower surface of the tongue, this membrane is thin and smooth, but on the upper side it is covered with numerous papillÆ, which, in structure, are similar to the sensitive papillÆ of the skin.

Illustration: Fig. 27. The salivary glands.
Fig. 27. The salivary glands. The largest one, near the ear, is the parotid gland. The next below it is the submaxillary gland. The one under the tongue is the sublingual gland.

The Salivary Glands are six in number, three on each side of the mouth. Their function is to secrete a fluid called saliva, which aids in mastication. The largest of these glands, the Parotid, is situated in front and below the ear; its structure, like that of all the salivary glands, is cellular. The Submaxillary gland is circular in form, and situated midway between the angle of the lower jaw and the middle of the chin. The Sublingual is a long flattened gland, and, as its name indicates, is located below the tongue, which when elevated, discloses the saliva issuing from its porous openings.

The Pharynx is nearly four inches in length, formed of muscular and membranous cells, and situated between the base of the cranium and the esophagus, in front of the spinal column. It is narrow at the upper part, distended in the middle, contracting again at its junction with the esophagus. The pharynx communicates with the nose, mouth, larynx, and esophagus.

The Esophagus, a cylindrical organ, is a continuation of the pharynx, and extends through the diaphragm to the stomach. It has three coats: first, the muscular, consisting of an exterior layer of fibers running longitudinally, and an interior layer of transverse fibers; second, the cellular, which is interposed between the muscular and the mucous coat; third, the mucous membrane, or internal coat, which is continuous with the mucous lining of the pharynx.

Illustration: Fig. 28. A representation of the interior of the stomach.
Fig. 28. A representation of the interior of the stomach. 1. The esophagus. 2. Cardiac orifice opening into the stomach. 6. The middle or muscular coat. 7. The interior or mucous coat. 10. The beginning of the duodenum. 11. The pyloric orifice.

The Stomach is a musculo-membranous, conoidal sac, communicating with the esophagus by means of the cardiac orifice (see Fig. 28). It is situated obliquely with reference to the body, its base lying at the left side, while the apex is directed toward the right side. The stomach is between the liver and spleen, subjacent to the diaphragm, and communicates with the intestinal canal by the pyloric orifice. It has three coats. The peritoneal, or external coat is composed of compact, cellular tissue, woven into a thin, serous membrane, and assists in keeping the stomach in place. The middle coat is formed of three layers of muscular fibers: in the first, the fibres run longitudinally; in the second, in a circular direction; and in the third, they are placed obliquely to the others. The interior, or mucous coat, lines this organ. The stomach has a soft, spongy appearance, and, when not distended, lies in folds. During life, it is ordinarily of a pinkish color. It is provided with numerous small glands, which secrete the gastric fluid necessary for the digestion of food. The lining membrane, when divested of mucus, has a wrinkled appearance. The arteries, veins, and lymphatics, of the stomach are numerous.

Illustration: Fig. 29. Small and large intestines.
Fig. 29. Small and large intestines. 1, 1, 2, 2. Small intestine. 3. Its termination in the large intestine. 4. Appendix vermiformis. 5. CÆcum. 6. Ascending colon. 7. Transverse colon. 8. Descending colon. 9. Sigmoid flexure of colon. 10. Rectum.

The Intestines are those convoluted portions of the alimentary canal into which the food is received after being partially digested, and in which the separation and absorption of the nutritive materials and the removal of the residue take place. The coats of the intestines are analogous to those of the stomach, and are, in fact, only extensions of them. For convenience of description, the intestines may be divided into the small and the large. The small intestine is from twenty to twenty-five feet in length, and consists of the Duodenum, Jejunum, and Ileum. The Duodenum, so called because its length is equal to the breadth of twelve fingers, is the first division of the small intestine. If the mucous membrane of the duodenum be examined, it will be found thrown into numerous folds, which are called valvulÆ conniventes, the chief function of which appears to be to retard the course of the alimentary matter, and afford a larger surface for the accommodation of the absorbent vessels. Numerous villi, minute thread-like projections, will be found scattered over the surface of these folds, set side by side, like the pile of velvet. Each villus contains a net-work of blood-vessels, and a lacteal tube, into which the ducts from the liver and pancreas open, and pour their secretions to assist in the conversion of the chyme into chyle. The Jejunum, so named because it is usually found empty after death, is a continuation of the duodenum, and is that portion of the alimentary canal in which the absorption of nutritive matter is chiefly effected. The Ileum, which signifies something rolled up, is the longest division of the small intestine. Although somewhat thinner in texture than the jejunum, yet the difference is scarcely perceptible. The large intestine is about five feet in length, and is divided into the CÆcum, Colon, and Rectum. The CÆcum is about three inches in length. Between the large and the small intestine is a valve, which prevents the return of excrementitious matter that has passed into the large intestine. There is attached to the cÆcum an appendage about the size of a goose-quill, and three inches in length, termed the appendix vermiformis. The Colon is that part of the large intestine which extends from the cÆcum to the rectum, and which is divided into three parts, distinguished as the ascending, the transverse, and the descending.

Illustration: Fig. 30. Villi of the small intestine greatly magnified.
Fig. 30. Villi of the small intestine greatly magnified.

Illustration: Fig. 31. A section of the Ileum, turned inside out,
Fig. 31. A section of the Ileum, turned inside out, so as to show the appearance and arrangement of the villi on an extended surface.The Rectum is the terminus of the large intestine. The intestines are abundantly supplied with blood-vessels. The arteries of the small intestine are from fifteen to twenty in number. The large intestine is furnished with three arteries, called the colic arteries. The ileo-colic artery sends branches to the lower part of the ileum, the head of the colon, and the appendix vermiformis. The right colic artery forms arches, from which branches are distributed to the ascending colon. The colica media separates into two branches, one of which is sent to the right portion of the transverse colon, the other to the left. In its course, the superior hemorrhoidal artery divides into two branches, which enter the intestine from behind, and embrace it on all sides, almost to the anus.

The Thoracic Duct is the principal trunk of the absorbent system, and the canal through which much of the chyle and lymph is conveyed to the blood. It begins by a convergence and union of the lymphatics on the lumbar vertebrÆ, in front of the spinal column, then passes upward through the diaphragm to the lower part of the neck, thence curves forward and downward, opening into the subclavian vein near its junction with the left jugular vein, which leads to the heart.

Illustration: Fig. 32.
Fig. 32. c, c. Right and left subclavian veins. b. Inferior vena cava. a. Intestines. d. Entrance of the thoracic duct into the left subclavian vein. 4. Mesenteric glands, through which the lacteals pass to the thoracic duct.

Illustration: Fig. 33. The inferior surface of the liver.
Fig. 33. The inferior surface of the liver. 1. Right lobe. 2. Left lobe. 3. Gall-bladder.

The Liver, which is the largest gland in the body, weighs about four pounds in the adult, and is located chiefly on the right side, immediately below the diaphragm. It is a single organ, of a dark red color, its upper surface being convex, while the lower is concave. It has two large lobes, the right being nearly four times as large as the left. The liver has two coats, the serous, which is a complete investment, with the exception of the diaphragmatic border, and the depression for the gall-bladder, and which helps to suspend and retain the organ in position; and the fibrous, which is the inner coat of the liver, and forms sheaths for the blood-vessels and excretory ducts. The liver is abundantly supplied with arteries, veins, nerves, and lymphatics. Unlike the other glands of the human body, it receives two kinds of blood; the arterial for its nourishment, and the venous, from which it secretes the bile. In the lower surface of the liver is lodged the gall-bladder, a membranous sac, or reservoir, for the bile. This fluid is not absolutely necessary to the digestion of food, since this process is effected by other secretions, nor does bile exert any special action upon, starchy or oleaginous substances, when mixed with them at a temperature of 100° F. Experiments also show that in some animals there is a constant flow of bile, even when no food has been taken, and there is consequently no digestion to be performed. Since the bile is formed from the venous blood, and taken from the waste and disintegration of animal tissue, it would appear that it is chiefly an excrementitious fluid. It does not seem to have accomplished its function when discharged from the liver and poured into the intestine, for there it undergoes various alterations previous to re-absorption, produced by its contact with the intestinal juices. Thus the bile, after being transformed in the intestines, re-enters the blood under a new form, and is carried to some other part of the system to perform its mission.

The Spleen is oval, smooth, convex on its external, and irregularly concave on its internal, surface. It is situated on the left side, in contact with the diaphragm and stomach. It is of a dark red color, slightly tinged with blue at its edges. Some physiologists affirm that no organ receives a greater quantity of blood, according to its size, than the spleen. The structure of the spleen and that of the mesenteric glands are similar, although the former is provided with a scanty supply of lymphatic vessels, and the chyle does not pass through it, as through the mesenteric glands. The Pancreas lies behind the stomach, and extends transversely across the spinal column to the right of the spleen. It is of a pale, pinkish color, and its secretion is analogous to that of the salivary glands; hence it has been called the Abdominal Salivary Gland.

Illustration: Fig. 34. Digestive organs.
Fig. 34. Digestive organs. 3. The tongue. 7. Parotid gland. 8. Sublingual gland. 5. Esophagus. 9. Stomach. 10. Liver. 11. Gall-bladder, 14. Pancreas. 13, 13. The duodenum. The small and large intestines are represented below the stomach.

Digestion is effected in those cavities which we have described as parts of the alimentary canal. The food is first received into the mouth, where it is masticated by the teeth, and, after being mixed with mucus and saliva, is reduced to a mere pulp; it is then collected by the tongue, which, aided by the voluntary muscles of the throat, carries the food backward into the pharynx, and, by the action of the involuntary muscles of the pharynx and esophagus, is conveyed to the stomach. Here the food is subjected to a peculiar, churning movement, by the alternate relaxation and contraction of the fibers which compose the muscular wall of the stomach. As soon as the food comes in contact with the stomach, its pinkish color changes to a bright red; and from the numerous tubes upon its inner surface is discharged a colorless fluid, called the gastric juice, which mingles with the food and dissolves it. When the food is reduced to a liquid condition, it accumulates in the pyloric portion of the stomach. Some distinguished physiologists believe that the food is kept in a gentle, unceasing, but peculiar motion, called peristaltic, since the stomach contracts in successive circles. In the stomach the food is arranged in a methodical manner. The undigested portion is detained in the upper, or cardiac extremity, near the entrance of the esophagus, by contraction of the circular fibers of the muscular coat. Here it is gradually dissolved, and then carried into the pyloric portion of the stomach. From this, then, it appears, that the dissolved and undissolved portions of food occupy different parts of the stomach. After the food has been dissolved by the gastric fluid, it is converted into a homogeneous, semi-fluid mass, called chyme. This substance passes from the stomach through the pyloric orifice into the duodenum, in which, by mixing with the bile and pancreatic fluid, its chemical properties are again modified, and it is then termed chyle, which has been found to be composed of three distinct parts, a reddish-brown sediment at the bottom, a whey-colored fluid in the middle, and a creamy film at the top. Chyle is different from chyme in two respects: First, the alkali of the digestive fluids, poured into the duodenum, or upper part of the small intestine, neutralizes the acid of the chyme; secondly, both the bile and the pancreatic fluid seem to exert an influence over the fatty substances contained in the chyme, which assists the subdivision of these fats into minute particles. While the chyle is propelled along the small intestine by the peristaltic action, the matter which it contains in solution is absorbed in the usual manner into the vessels of the villi by the process called osmosis. The fatty matters being subdivided into very minute particles, but not dissolved, and consequently incapable of being thus absorbed by osmosis, pass bodily through the epithelial lining of the intestine into the commencement of the lacteal tubes in the villi. The digested substances, as they are thrust along the small intestines, gradually lose their albuminoid, fatty, and soluble starchy and saccharine matters, and pass through the ileo-cÆcal valve into the cÆcum and large intestine. An acid reaction takes place here, and they acquire the usual fÆcal smell and color, which increases as they approach the rectum. Some physiologists have supposed that a second digestion takes place in the upper portion of the large intestine. The lacteals, filled with chyle, pass into the mesenteric glands with which they freely unite, and afterward enter the receptaculum chyli, which is the commencement of the thoracic duct, a tube of the size of a goose-quill, which lies in front of the backbone. The lymphatics, the function of which is to secrete and elaborate lymph, also terminate in the receptaculum chyli, or receptacle for the chyle. From this reservoir the chyle and lymph flow into the thoracic duct, through which they are conveyed to the left subclavian vein, there to be mingled with venous blood. The blood, chyle, and lymph, are then transmitted directly to the lungs.

The process of nutrition aids in the development and growth of the body; hence it has been aptly designated a "perpetual reproduction." It is the process by which every part of the body assimilates portions of the blood distributed to it. In return, the tissues yield a portion of the material which was once a component part of their organization. The body is constantly undergoing waste as well as repair. One of the most interesting facts in regard to the process of nutrition in animals and plants is, that all tissues originate in cells. In the higher types of animals, the blood is the source from which the cells derive their constituents. Although the alimentary canal is more or less complicated in different classes of animals, yet there is no species, however low in the scale of organization, which does not possess it in some form.[2] The little polyp has only one digestive cavity, which is a pouch in the interior of the body. In some animals circulation is not distinct from digestion, in others respiration and digestion are performed by the same organs; but as we rise in the scale of animal life, digestion and circulation are accomplished in separate cavities, and the functions of nutrition become more complex and distinct.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page