X IN THE COTTON MILL

Previous

If you ravel a bit of cotton cloth, you will find that it is made up of tiny threads, some going up and down, and others going from right to left. These threads are remarkably strong for their size. Look at one under a magnifying glass, in a brilliant light, and you will see that the little fibers of which it is made shine almost like glass. Examine it more closely, and you will see that it is twisted. Break it, and you will find that it does not break off sharp, but rather pulls apart, leaving many fibers standing out from both ends.

Cotton comes to the factory tightly pressed in bales, and the work of the manufacturer is to make it into these little threads. The bales are big, weighing four or five hundred pounds apiece. They are generally somewhat ragged, for they are done up in coarse, heavy jute. The first glance at an opened cotton bale is a little discouraging, for it is not perfectly clean by any means. Bits of leaves and stems are mixed in with the cotton, and even some of the smaller seeds which have slipped through the gin. There is dust, and plenty of it, that the coarse burlap has not kept out. The first thing to do is to loosen the cotton and make it clean. Great armfuls are thrown into a machine called a "bale-breaker." Rollers with spikes, blunt so as not to injure the fiber, catch it up and tear the lumps to pieces, and "beaters" toss it into a light, foamy mass. Something else happens to the cotton while it is in the machine, for a current of air is passing through it all the while, and this blows out the dust and bits of rubbish. This current is controlled like the draft of a stove, and it is allowed to be just strong enough to draw the cotton away from the beater when it has become light and open, leaving the harder masses for more beating. When it comes out of the opener, it is in sheets or "laps" three or four feet wide and only half an inch thick. They are white and fleecy and almost cloudlike; and so thin that any sand or broken leaves still remaining will drop out of their own weight.

In this work the manufacturer has been aiming, not only at cleaning the cotton and making it fluffy, but also at mixing it. There are many sorts of cotton, some of longer or finer or more curly or stronger fiber than others, some white and some tinged with color; but the cloth woven of cotton must be uniform; therefore all these kinds must be thoroughly mixed. Even the tossing and turning and beating that it has already received is not enough, and it has to go into a "scutcher," three or four laps at a time, one on top of another, to have still more beating and dusting. When it comes out, it is in a long roll or sheet, so even that any yard of it will weigh very nearly the same as any other yard. The fibers, however, are lying "every which way," and before they can be drawn out into thread, they must be made to lie parallel. This is brought about in part by carding. When people used to spin and weave in their own houses, they used "hand cards." These were somewhat like brushes for the hair, but instead of bristles they had wires shaped much as if wire hairpins had been bent twice and put through leather in such a way as to form hooks on one side of it. This leather was then nailed to a wooden back and a handle added. The carder took one card in each hand, and with the hooks pointing opposite ways brushed the cotton between them, thus making the fibers lie parallel. This is just what is done in a mill, only by machinery, of course. Instead of the little hand cards, there are great cylinders covered with what is called "card clothing"; that is, canvas bristling with the bent wires, six or seven hundred to the square inch. This takes the place of one card. The place of the other is filled by what are called "flats," or narrow bars of iron covered with card clothing. The cylinders move rapidly, the flats slowly, and the cotton passes between them. It comes out in a dainty white film not so very much heavier than a spider's web, and so beautifully white and shining that it does not seem as if the big, oily, noisy machines could ever have produced it. In a moment, however, it is gone somewhere into the depths of the machine. We have seen the last of the fleecy sheet, for the machinery narrows it and rounds it, and when it comes into sight again, it looks like a soft round cord about an inch thick, and is coiled up in cans nearly a yard high. This cord is called "sliver."

Cotton Sliver Cotton Roving IN A COTTON MILL
The "sliver" coming through the machine, and the "roving" being twisted and wound on bobbins.

The sliver is not uniform; even now its fibers are not entirely parallel, and it is as weak as wet tissue paper. It now pays a visit to the "drawing-frame." Four or six slivers are put together and run through this frame. They go between four pairs of rollers, the first pair moving slowly, the others more rapidly. The slow pair hold the slivers back, while the fast one pull them on. The result is that when the sliver comes out from the rollers, its fibers are much straighter. This process is repeated several times; and at last when the final sliver comes out, although it looks almost the same as when it came from the carding-machine, its fibers are parallel. It is much more uniform, but it is very fragile, and still has to be handled with great care. It is not nearly strong enough to be twisted into thread; and before this can be done, it must pass through three other machines. The first, or "slubber," gives it a very slight twist, just enough to suggest what is coming later, and of course in doing this makes it smaller. The cotton changes its name at every operation, and now it is called "roving." It has taken one long step forward, for now it is not coiled up in cans, but is wound on "bobbins," or great spools. The second machine, the "intermediate speeder," twists it a very little more and winds it on fresh bobbins. It also puts two rovings together, so that if one happens to be thin in one place, there is a chance for it to be strengthened by a thicker place in the other. The third machine, the "fine speeder," simply makes a finer roving.

All this work must be done merely to prepare the raw cotton to be twisted into the tiny threads that you see by raveling a piece of cotton cloth. Now comes the actual twisting. If you fasten one end of a very soft string and twist the other and wind it on a spool, you will get a spool of finer, stronger, and harder-twisted string than you had at first. This is exactly what the "ring-spinner" does. Imagine a bobbin full of roving standing on a frame. Down below it are some rolls between which the thread from the bobbin passes to a second bobbin which is fast on a spindle. Around this spindle is the "spinning-ring," a ring which is made to whirl around by an endless belt. This whirling twists the thread, and another part of the machine winds it upon the second bobbin. Hundreds of these ring-spinners and bobbins are on a single "spinning-frame" and accomplish a great deal in a very short time. The threads that are to be used for the "weft" or "filling" go directly into the shuttles of the weavers after being spun; but those which are to be used for "warp" are wound first on spools, then on beams to go into the loom.

Little children weave together strips of paper, straws, and splints,—"over one, under one,"—and the weaving of plain cotton cloth is in principle nothing more than this. The first thing to do in weaving is to stretch out the warp evenly. This warp is simply many hundreds of tiny threads as long as the cloth is to be, sometimes forty or fifty yards. They must be stretched out side by side and close together. To make them regular, they are passed between the teeth of a sort of upright comb; then they are wound upon the loom beam, a horizontal beam at the back of the loom. Here they are as close together as they will be in the cloth. With a magnifying glass it is easy to count the threads of the warp in an inch of cloth. Some kinds of cloth have a hundred or even more to the inch. In order to make cloth, the weaver must manage in some way to lower every other one of these little threads and run his shuttle over them, as the children do the strips of paper in their paper weaving. Then he must lower the other set and run the shuttle over them. "Drawing in" makes this possible. After the threads leave the beam, they are drawn through the "harnesses." These are hanging frames, one in front of the other, filled with stiff, perpendicular threads or wires drawn tight, and with an eye in each thread. Through these eyes the threads of the warp are drawn, the odd ones through one, and the even through the other. Then, keeping the threads in the same order, they pass through the teeth of a "reed,"—that is, a hanging frame shaped like a great comb as long as the loom is wide; and last, they are fastened to the "front beam," which runs in front of the weaver's seat and on which the cloth is to be rolled when it has been woven. Each harness is connected with a treadle. The weaver puts his foot on the treadle of the odd threads and presses them down. Then he sends his shuttle, containing a bobbin full of thread, sliding across over the odd threads and under the even. He puts his foot on the treadle of the even threads and sends the shuttle back over the even and under the odd. At each trip of the shuttle, the heavy reed is drawn back toward the weaver to push the last thread of the woof or filling firmly into place.

This is the way cloth is woven in the hand looms which used to be in every household. The power loom used in factories is, even in its simplest form, a complicated machine; but its principle is exactly the same. If colors are to be used, great care is needed in arranging warp and woof. If you ravel a piece of checked gingham, you will see that half the warp is white and half colored; and that in putting in the woof or filling, a certain number of the threads are white and an equal number are colored. If you look closely at the weaving of a tablecloth, you will see that the satin-like figures are woven by bringing the filling thread not "over one and under one," but often over two or three and under one. In drilling or any other twilled goods, several harnesses have to be used because the warp thread is not lowered directly in line with the one preceding, but diagonally. Such work as this used to require a vast amount of skill and patience; but the famous Jacquard machine will do it with ease, and will do more complicated weaving than any one ever dreamed of before its invention, for it will weave not only regular figures extending across the cloth, but can be made to introduce clusters of flowers, a figure, or a face wherever it is desired. By the aid of this, every little warp thread or cluster of threads can be lifted by its own hooked wire without interfering with any other thread. Cards of paper or thin metal are made for each pattern, leaving a hole wherever the hook is to slip through and lift up a thread. After the cards are once made, the work is as easy as plain weaving; but there must be a separate card for every thread of filling in the pattern, and sometimes a single design has required as many as thirty thousand pattern cards.

The machines in a cotton mill are the result of experimenting, lasting through many years. They do not seem quite so "human" as those which help to carry on some parts of other manufactures; but they are wonderfully ingenious. For instance, the sliver is so light that it seems to have hardly any weight, but it balances a tiny support. If the sliver breaks, the support falls, and this stops the machine. Again, if one of the threads of the warp breaks when it is being wound on the beam, a slender bent wire that has been hung on it falls. It drops between two rollers and stops them. Then the workman knows that something is wrong, and a glance will show where attention is needed. Success in a cotton mill demands constant attention to details. A mill manager who has been very successful has given to those of less experience some wise directions about running a mill. For one thing, he reminds them that building is expensive and that floor space counts. If by rearranging looms space can be made for more spindles, it is well worth while to rearrange. He tells them to study their machines and see whether they are working so slowly that they cannot do as much as possible, or so fast as to strain the work. He bids them to keep their gearings clean, to be clear and definite in their orders, and to read the trade papers; but above everything else to look out for the little things, a little leak in the mill dam, a little too much tightness in a belt, or the idleness of just one spindle. Herein lies, he says, one of the great differences between a successful and an unsuccessful superintendent.

Weaving as practiced in factories is a complicated business; but whether it is done with a simple hand loom in a cottage or with a big power loom in a great factory, there are always three movements. One separates the warp threads; one drives the shuttle between them; and one swings the reed against the filling thread just put in.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page