V AT THE GOLD DIGGINGS

Previous

When gold was first discovered in California, in 1848, people from all over the world made a frantic rush to get there, every one of them hoping that he would be lucky enough to make his fortune, and fearing lest the precious metal should be gone before he could even begin to dig. The gold that these men gathered came from what were called "placers"; that is, masses of gravel and sand along the beds of mountain streams. Each miner had a pan of tin or iron, which he filled half-full of the gravel, or "pay dirt," as the miners called it. Then, holding it under water, he shook off the stones and mud over the side of the pan, leaving grains of gold mixed with black sand at the bottom. This black sand was iron, and after a while the miners removed it with a magnet, dried what remained, and blew away the dust, leaving only the grains of gold.

Another contrivance which soon came into use was the "cradle." This was a long box, sometimes only a hollowed-out log. At the top was a sieve which sifted out the stones. Nailed to the bottom of the cradle were small cleats of wood, or "riffles," which kept the water from running so fast as to sweep the gold out of the cradle with it. The cradle was placed on rockers and was also tilted slightly. The miner shoveled the gravel into the top of the cradle and his partner rocked it. The sieve kept back the stones, the water broke up the lumps of earth and gravel and washed them down the cradle, and the grains of gold were stopped by the riffles, and sank to the bottom. Sometimes the "pay dirt" continued under a stream. To get at it, the miners often built a little canal and turned the water into a new channel; then they could work on the former bed of the river.

Before many years had passed, the gold that was near the surface had been gathered. The miners then followed the streams up into the mountains, and found that much of the gold had come from beds where in ancient times rivers had flowed. There was gold still remaining in these beds, but it was poorly distributed, the miners thought. Sometimes there would be quite an amount in one place, and then the miner would dig for days without finding any more. Even worse than this was the fact that these gravel beds were not on the top of the ground, but were covered up with soil and trees. Evidently the slow work with pans and cradles would not pay here; but it occurred to some one that if a powerful stream of water could be directed against the great banks of earth, as water is directed against a burning building, they would crumble, the dirt could be washed down sluices, and the gold be saved. This was done. Great reservoirs were built high up in the mountains, and water was brought by means of ditches or pipes to a convenient place. Then it was allowed to rush furiously through a hose and nozzle, and the great stream coming with tremendous force was played upon the banks of gravel. The banks crumbled, the gravel was washed into a string of sluices, or long boxes with riffles to catch the gold. Soon the miners found that if quicksilver was put into these sluices, it would unite with the gold and make a sort of paste called "amalgam." Then if this amalgam was heated, the quicksilver would be driven off in the form of gas, and the gold would remain in a beautiful yellow mass.

HYDRAULIC GOLD MINING HYDRAULIC GOLD MINING
A placer mine at Gold Point, California, where tremendous streams of water under high pressure are busy washing away the side of a gold-bearing hill.

The ancient rivers had also carried gold to the valleys, and to collect this a dredge, which the miners called a "gold ship," came into use. The "ship" part of this machine is an immense flat scow. Stretching out from one end is something which looks like a moving ladder. This is the support of an endless chain of buckets, each of which can bite into the gravel and take a mouthful of five or six hundred pounds. They drop this gravel into a big drum which is continually revolving. Water flows through the drum, and washes out the sand and bits of gold over large tables, where by means of riffles and quicksilver the gold is captured. This scow was usually on dry land at first; but its digging soon made a lake, and then it floated. It must be more fascinating to hold a pan in your own hands and pick out little grains of gold or perhaps even a big piece of it with your own fingers, but if the gravel is good the dredge makes more money.

In Alaska the great difficulty in mining is that, except at the surface, the ground is frozen all the year round. At first, the miners used to thaw the place where they wished to dig by building wood fires; but this was a slow method, and now the thawing is done by steam. They carry the steam in a pipe to the place where the digging is to be done, and send it through a hose. At the end of the hose is a pointed steel tube. They hammer this tube into the ground and let some steam pass through the nozzle. This softens the ground so that picks and shovels may be used. There is generally cold enough in Alaska, but once at least the miners had to manufacture it. The gold-bearing gravel was deep, the ground was flat, and it was often overflowed. They set up a freezing plant, and shut in their land with a bulkhead of ice several feet thick. Then they pumped out what water was already in and did their work with no more trouble.

When gold began to grow less in the California gravel, the miners looked for it in the rocks on the mountain-side. The placer miners laughed at them and called their shafts "coyote holes"; but in time the placers failed, while nearly all of our gold to-day comes from veins of white quartz in the rocks. A vein of gold is the most capricious thing in the world. It may be so tiny that it can hardly be seen, then widen and grow rich in gold, then suddenly come to an end. This is why a new mine is so uncertain an enterprise. The gold may hold out and bring fortunes to the investors, or it may fail, and then all they will have to show for their money is the memory that they put it into a hole in the ground. The managers of a few of the well-established mines, however, have explored so far as to make sure that there is gold enough for many years of digging.

The mining engineer must be a very wide-awake man. It is not enough for him simply to remember what was taught him in the schools of mining; he must be bright enough to invent new ways of meeting difficulties. No two mines are alike, and he must be ready for all sorts of emergencies. A gold mine now consists of a shaft or pit dug several hundred feet down into the rock, with levels or galleries running off from it and with big openings like rooms made where the rock was dug out. The roofs of the rooms are supported by great timbers. To break away the rock, the miner makes a hole with a rock drill worked by electricity or compressed air, puts powder or dynamite into the hole and explodes it. The broken rock is then raised to the surface and crushed in a "stamping mill." Here the ore is fed into a great steel box called a "mortar." Five immense hammers, often weighing a thousand pounds apiece, drop down upon the ore, one after another, until it is fine enough to go through a wire screen in the front of the box. When two hundred or more of these hammers are pounding away with all their might, a stamping mill is a pretty noisy place. The ore, crushed to a fine mud, now runs over sloping tables covered with copper. Sticking to the top of the copper is a film of quicksilver. This holds fast whatever gold there may be and makes an amalgam, which is scraped off from time to time, and the quicksilver is driven from the gold by heat.

Gold that is not united with other metals is called "free milling gold." Much of it, however, is found in combination with one metal or another, and is known as "rebellious" or "refractory" gold. Such gold may sometimes be set free by heat, and sometimes by chemicals. One way is by the use of chlorine gas, and the story of it sounds almost like "The house that Jack built." It might run somewhat like this: This is the salt that furnishes the chlorine. This is the chlorine gas that unites with the gold. This is the chloride that is formed when the chlorine gas unites with the gold. This is the water that washes from the tank the chloride that is formed when the chlorine gas unites with the gold. This is the sulphate of iron that unites with the chlorine gas of the chloride that the water washes from the tank that is formed when the chlorine gas unites with the gold—and leaves the gold free.

Another method is by the use of cyanide. More than a century ago a chemist discovered that if gold was put into water containing a little cyanide, the gold would dissolve, while quartz and any metals that might be united with the gold would settle in the tank. The water in which the gold is dissolved is now run into boxes full of shavings of zinc and is "precipitated" upon them; that is, the tiny particles of gold in the water fall upon the zinc and cling to it. Zinc melts more easily than gold, so if this gilded zinc is put into a furnace, the zinc melts and the gold is set free.

Very often gold is found combined with lead or copper. It must then be melted or smelted in great furnaces. The metal is heavier than the rock and settles to the bottom of the furnace. It is then drawn off and the gold is separated from the other metals, usually by electricity.

Sometimes large pieces of gold called "nuggets" are found by miners. The largest one known was found in Australia. It weighed 190 pounds and was worth $42,000. Sometimes spongy lumps of gold are found; but as a general thing gold comes from the little specks scattered through veins in rock, and much work has to be done before it can be made into coins or jewelry. It is too soft for such uses unless some alloy, usually copper or silver, is mixed with it to make it harder. Sometimes it is desirable to know how much alloy has been added. The jeweler then makes a line with the article on a peculiar kind of black stone called a "touchstone," and by the color of the golden mark he can tell fairly well how nearly pure the article is. To be more accurate, he pours nitric acid upon the mark. This eats away the alloy and leaves only the gold.

Gold is a wonderful metal. It is of beautiful color; it can be hammered so thin that the light will shine through it; few acids affect it, and the oxygen which eats away iron does not harm it. Pure gold is spoken of as being "twenty-four carats fine," from carat, an old weight equal to one twenty-fourth of an ounce troy. Watchcases are from eight to eighteen carats fine; chains are seldom more than fourteen; and the gold coins of the United States are about eleven parts of gold and one of copper. Coins wear in passing from one person to another, and that is why the edges are milled, so that it may be more easily seen when they have become too light to be used as coins. When such pieces come into the hands of the Government, they must be recoined.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page