CHAPTER XXVII. HYPOSTHENISANTS. NEUROTICS PRODUCING DEATH BY SYNCOPE. ACONITE--PRUSSIC ACID. Aconite (Aconitum Napellus, Monkshood, Wolfsbane, Blue Rocket).—This beautiful plant is found in most parts of Europe. Aconitia, the alkaloidal base of the plant, is the most deadly poison known; the fiftieth part of a grain having nearly caused death. The chief symptoms of poisoning by aconite are numbness and tingling in the mouth and throat, giddiness, abolition of muscular power, pain in the abdomen, with vomiting and purging. Sometimes delirium and slight stupor have been noticed. The pupils are usually dilated, the skin is cold, the pulse exceedingly feeble, the breathing oppressed, and there is a dread of approaching dissolution. Frequently the sufferer is perfectly conscious, though paralyzed, till death suddenly occurs after two or three hurried gasps. According to Dr. Fleming, death may be due to a sedative impression on the nervous system, or to asphyxia from paralysis of the respiratory muscles, or to syncope. A fatal mistake is not very uncommonly made in eating the root of aconite for that of horseradish. The sense of tingling and numbness produced by the former is so different from the pungent taste of the latter that with due care no mistake should occur, except the plants be allowed to grow together, which should never be done. A case occurred in Ireland where a woman poisoned one man and nearly killed another by sprinkling powdered aconite root over a dish of greens. Of the root one drachm, of the tincture one drachm, and of the alcoholic extract four grains, have caused death. Death follows a considerable dose in less than an hour, but sometimes a longer period elapses. The Bikh poison, formerly much used in India, and still not unfrequently employed, has as its basis the Aconitum ferox, a still more dangerous drug than our indigenous plant. Treatment.—No time must be lost in the use of remedies. In addition to emetics, castor oil, and animal charcoal, benefit may be derived from administering strong coffee. Brandy or ammonia should also be given, while the limbs and back are well rubbed with hot towels. Artificial respiration might prove useful. There is no good test for aconitia. Hydrocyanic Acid (Prussia Acid), on account of its energetic and rapid action, is one of the most formidable poisons with which we are acquainted. In its concentrated state it is a limpid colorless liquid; possessing a somewhat acrid taste, and having an odor, when diffused through the air, resembling that of oil of bitter almonds. When diluted with water, it forms the acid kept by the druggist. The properties of this variety are similar to those of the pure form; except that, if kept in the dark, it is not so readily decomposed. It is in this condition that it is used as a poison. The diluted acid of the British Pharmacopoeia contains about 2 per cent., and that known as Scheele’s from 4 to 5 per cent., of the strong acid; but all vary greatly with keeping. One of the salts of hydrocyanic acid, the cyanide of potassium, claims a short notice, since it is largely employed by photographers, workers in electrotype, &c. It has been taken as a poison. This salt is sold in the form of deliquescent white crystals, or in crystalline masses, which are very soluble in water, and possess the odor of prussic acid. From three to five grains will destroy life almost as rapidly as prussic acid itself, and in the same manner: a dose of five grains has proved fatal. Several vegetable substances yield prussic acid, such as the kernels of the peach, apricot, nectarine, cherry, &c., the leaves of the cherry laurel, and the pips of apples and pears. Cases of alarming illness have occurred from eating bitter almonds too freely; while the essential oil obtained by distilling the pulp of these almonds with water is a powerful poison. This essence or oil of bitter almonds contains about ten per cent. of anhydrous prussic acid; and it is probable that from ten to thirty drops would prove fatal to an adult. The prussic acid may, however, be separated from it, and leave the oil harmless. A distilled water obtained from the leaves of the cherry laurel, which was formerly employed in medicine, proved dangerous from its very variable strength; it has been used as a poison. In the well-known case of Sir Theodosius Boughton, poisoned by Captain Donellan in 1781, laurel water produced death within half an hour after two ounces had been swallowed. The smallest quantity of prussic acid which has been known to destroy life is nine-tenths of a grain of the anhydrous acid, equal to forty-five minims of the diluted preparation of the British Pharmacopoeia; and it is probable that this would, Symptoms.—These will vary with the dose and the mode of exhibition. Inhalation of the vapor of anhydrous prussic acid would immediately cause death. The vapor of the diluted acid has given rise to serious symptoms with great rapidity. Scheele is said to have been suddenly killed by respiring the vapor of the dilute acid while making his experiments. When the diluted acid is taken in a large dose the symptoms may commence during swallowing, death following so quickly that scarcely any effects can be observed. The chief symptoms, perhaps, are insensibility, slow gasping, or convulsive respiration, a clammy cold skin, fixed and glistening eyes, dilated pupils, spasmodic closure of the jaws, an almost imperceptible pulse, and sometimes convulsions of the limbs and trunk. The rapidity with which consciousness is lost is well exemplified in an instance recorded by Hufeland, where a man about to be apprehended as a thief took an ounce of the acid, staggered a few steps and fell apparently lifeless. In a few moments a single violent respiration was made, and within five minutes of taking the poison he was dead. Insensibility is not, however, in all instances, immediately produced; many an authenticated The utterance of a shriek has been said to be characteristic of poisoning by this acid; but toxicologists know that such has not been observed in the human subject, and that there is merely a gasping for breath, or perhaps a call for help. A small dose produces faintness, insensibility, difficulty of breathing, involuntary evacuations, loss of muscular power, convulsions, and temporary paralysis. If the proper treatment be employed, recovery may often be effected. Post-mortem Appearances.—The body is generally livid, the countenance pallid, or sometimes livid and bloated, the jaws firmly closed, and the hands clenched. There is frequently blood or froth about the mouth, and the eyes are sometimes described as prominent and glistening. There is often an odor of prussic acid about the body, which is more perceptible on opening the stomach. The venous system is usually gorged with blood; and the brain, lungs, heart, liver, spleen, and kidneys have been found congested with dark-colored fluid blood. Treatment.—There is no chemical antidote to this poison which can be relied upon. Chlorine and the mixed oxides of iron have been recommended; but even if one of these agents happened to be at hand, it is doubtful if its employment could be timely enough to be advantageous. Attempts must be made to restore animation by cold affusion, stimulating frictions to the chest and abdomen, warmth to the surface, and the If recovery ensue from the immediate effects, vomiting should be produced by emetics or otherwise, after which strong coffee, with brandy, ought to be administered. Tests.—The best are the following: When hydrocyanic acid has to be separated from organic substances, such as the contents of the stomach, it is usual to take advantage of its ready volatility. If the acid be not in combination it may be given off so readily as to be detected by a watch glass moistened with nitrate of silver held over the vessel containing the acid; but in order to make sure of its presence or absence the following process should be adopted. The suspected material should be acidulated with pure sulphuric acid so as to insure the prussic acid being in a free state. The substances thus acidulated are to be placed in a retort, distilled over a water bath, and the distillate collected in a cool receiver containing some caustic potass. About one-sixth of the fluid substance should in this way be distilled over, when the liquid in the receiver may be tested by the silver or iron tests, or the vapor as it passes over may be tried with the sulphur test. 1. The peculiar odor of prussic acid is well known, and is a very delicate test, taken in conjunction with others, of its presence. 2. The Silver Test.—Nitrate of silver yields, with 3. The Iron Test.—Of the liquid collected in the receiver above-mentioned, or the suspected acid liquid, saturated with a few drops of caustic potass, a portion is to be taken, and to this is to be added a small quantity of a solution of sulphate of iron. A dirty brownish or greenish precipitate will fall, consisting of a mixture of the oxide of iron and prussian blue. On adding a few drops of diluted sulphuric or hydrochloric acid, and thus dissolving the oxides, the prussian blue will immediately be made clear if hydrocyanic acid be present. 4. The Copper Test.—Sulphate of copper added to prussic acid rendered slightly alkaline by potass, gives a greenish-white precipitate, which becomes white by the addition of a few drops of hydrochloric acid to dissolve the blue precipitated oxide of copper. 5. The Sulphur Test.—One of the most useful tests for prussic acid, whether in the fluid or volatile state, is the so-called sulphur or Liebig’s test. It is best adapted for detecting the acid in a state of vapor, and to this end a drop of yellow sulphide of ammonium in a watch-glass is held over the suspected liquid, which may be warmed by the hand to facilitate the evolution of the acid. In this position the watch-glass should be allowed to remain for some little time, after which a drop of solution of perchloride of iron is to be added, which will give rise to a blood-red color not discharged by corrosive sublimate. If the acid is in the liquid form a drop of the prussic acid and the yellow sulphide may be mixed and heated until they thoroughly combine. A drop of sulphate of iron is then added as before, but all the sulphide must be decomposed or a black sulphide of iron will be produced, even though prussic acid be present, instead of the ordinary blood-red color. Other substances give a similar reaction with iron; but their color is discharged by corrosive sublimate. |