Meteorologists, in their candid moments, have been heard to express disappointment over the amount of progress made in the art of weather forecasting during the past half-century. “Shall we ever,” they ask, “be able to predict the weather with mathematical certainty, as the astronomer predicts an eclipse of the sun or moon?” Perhaps even within the meteorological fold there are unorthodox optimists who would answer such a question thus: “Yes, because some day we shall control the weather. It is inconceivable that man, who is every day achieving new miracles in the conquest of nature, should not eventually find a way of regulating the rainfall and sunshine that are of such vital importance to his crops, the winds that must be reckoned with in his voyages by sea and air, and the various other elements of weather that have so much to do with his happiness and welfare. The attainment of this object is so tremendously desirable that it cannot forever baffle human ingenuity.” In support of such a bold assertion it might be pointed out that we already control the weather to a certain limited extent. When the horticulturist burns orchard heaters to protect his fruit from frost he certainly alters the weather for a few hours over a small area of the earth. If there were any practical justification of the process, the temperature of The climate of a city is, through causes dependent upon man, materially different from the natural climate of the surrounding country. Every dwelling provided with heating arrangements enjoys an artificial summer amid the blasts of winter. Local control of the winds is exemplified in the planting of thousands of miles of trees as windbreaks in the prairie regions of our Middle West. By moderating the winds this process has a marked effect on temperature and evaporation and is so beneficial to crops that in the aggregate it furnishes a striking example of successful “weather-making” by mankind. Analogous methods, perfectly feasible with means already at our disposal, would change the whole climatic aspect of large areas of the earth’s surface. The question “Can we make it rain?” may be answered in the affirmative by those who are neither impostors nor victims of self-delusion. The deposit of spray from the spout of a teakettle might, without much stretching of terms, be described as a miniature artificial rainstorm; but much bigger showers, in nowise different from those occurring in nature, can also be produced artificially. Huge clouds have often been observed to form over forest fires and other great conflagrations. These clouds, composed of water drops, tower far above the smoke cloud, and are identical in character and mode of origin with the cumulus and cumulo-nimbus clouds formed by currents of moist air rising from the heated ground on a summer day. There are several well- Unfortunately the vast majority of methods whereby man has attempted to regulate the weather have no such rational foundation as those we have just mentioned. Some are wholly superstitious, others are purely empirical, and yet others are based upon ideas that their promoters suppose or pretend to be scientific, but that are actually fallacious. In the history of superstitious practices weather-making plays a prominent part. Sir J.G. Frazer, in that great storehouse of myth and folklore, “The Golden Bough,” says: “Of the things which the public magician sets himself to do for the good of the tribe, one of the chief is to control the weather and especially to insure an adequate fall of rain. In savage communities the rain-maker is a very important personage; and often a special class of magicians exists for the purpose of regulating the heavenly water supply.” Frazer devotes ninety pages of his work to a rapid survey of the superstitious methods of controlling the weather that have found credence among the various races of mankind. These range all the way from the most complicated ceremonies to the summary expedient of throwing a passing stranger into a river to bring rain. The sailor who whistles or scratches the mast to raise a wind is merely keeping up a quaint custom, The efforts of modern weather-makers have been directed especially to two objects; viz., the production of rain and the prevention of hailstorms. In the United States a certain amount of ingenuity has also been devoted to the task of dispelling tornadoes. Some years ago a device for the latter purpose was patented, consisting of a box, containing explosives, mounted on a pole and erected a mile or so to the southwestward of the village to be protected from these unwelcome visitors. The force of the wind was expected to detonate the explosives by driving a movable board against percussion caps. The inventor believed that a violent explosion would disperse the passing tornado funnel. Apart from the fact that a single installation of this character, or even several of them, would seldom happen to be at exactly the right spot to explode close to the relatively The same disproportion between the giant forces at work in the atmosphere and the pygmy forces at the disposal of mankind is a point that is overlooked in most attempts at weather-making. The widespread belief that rain can be produced by explosions rises so far above the level of ordinary popular delusions that it has sometimes led to large expenditures of money on the part of drought-ridden communities and even of national governments. Perhaps the most remarkable example of official confidence in the efficacy of this process was that furnished some years ago by the Volksraad, or legislative assembly, of the Transvaal, which passed a law forbidding the bombardment of the clouds to produce rain, on the ground that the rain-makers were thwarting the will of the Almighty! One manifestation of the belief in question is found in the common assertion that rain is the usual sequel of battles. This idea originated, however, long before the invention of gunpowder. It is mentioned by Plutarch and other writers of antiquity. Whatever superstition or crude process of reasoning may have first given support to this notion in the popular mind, the explanation now commonly advanced is that the condensation of In recent years another explanation has been offered for the alleged production of rain by explosions; viz., that the smoke and gases arising from an explosion increase condensation by increasing the number of “nuclei” in the atmosphere. As we have seen, however, in considering the natural formation of rain, the number of condensation nuclei normally present in the atmosphere is so great that it must be diminished, rather than increased, before drops as large as raindrops can be formed. Moreover, the nuclei required for the condensation of water vapor, including molecules of highly hygroscopic gases, are given forth in abundance by great manufacturing centers, yet these places do not have a heavier rainfall than the surrounding country. Pittsburgh, for example, is actually one of the driest places in Pennsylvania. One obvious reason why rain often follows a battle is that battles are frequently fought in regions There is, however, a particular reason why rain is rather more likely to occur soon after a battle than shortly before one; viz., the fact that intervals of fair weather, with consequent dry roads, are used by commanders in carrying out the movement of troops that precede an engagement. By the time such arrangements, often occupying several days, are completed, the “spell” of fine weather is likely to be over, and a rainstorm is due in accordance with the normal program of nature. The most famous undertaking in the history of rain-making—and one which has had an incalculable effect in fostering the credulity of the public with respect to similar enterprises—was that carried out by General Robert Dyrenforth on behalf of the United States Government in 1891. Congress voted appropriations amounting to $9,000 for these experiments, and Dyrenforth was appointed a “special agent” of the Department of Agriculture to direct them. After some preliminary trials in the suburbs of Washington, the experimenters proceeded to a ranch near Midland, Texas. Here a few balloons In 1911 and 1912 the late C.W. Post, of breakfast-food fame, expended many thousand pounds of dynamite in efforts to produce rain in Texas and Michigan. Showers undoubtedly occurred in conjunction with Post’s experiments, but conditions favoring their occurrence were plainly indicated on the current daily weather maps, and they had been duly forecast by the Weather Bureau. The professional rain-maker does not generally resort to the expensive process of bombarding the clouds. His methods most frequently involve the use of chemicals, and the details are shrouded in mystery. For example, about a quarter of a century ago one Frank Melbourne, known as “the Australian rain-maker,” enjoyed great celebrity and coined money by his exploits in this field. His plan was to shut himself up in a barn, freight car, or Several of the methods that have been suggested from time to time for producing rain are sufficiently discredited by the fact that the expense of putting them into execution would more than offset any benefits derived from the rain, if the experiments proved successful. Thus one genius, observing the deposit of water on the outside of an ice pitcher in a warm room, proposed to set up a barrier packed with ice in the path of moisture-bearing winds. Another plan occasionally suggested is to sprinkle the atmosphere aloft with liquid air or liquid carbon dioxide, in order to lower the temperature, by the rapid evaporation of these substances, below the point of condensation. A third proposal is to create a local updraft of air by means of powerful fans or blowers, thus imitating the convectional process by which clouds and rain are formed in nature. Lastly, various plans have been suggested for altering the electrical condition of the upper atmosphere—for example, by electrical discharges from balloons—on the assumption that rainfall might thus be promoted. This assumption, however, is not consistent with known facts as to the relation between atmospheric electricity and the condensation of atmospheric water vapor. While in America a vast amount of money has been wasted on futile experiments in rain-making, far more has been spent in Europe on schemes for averting hailstorms. Methods of accomplishing this purpose have varied from age to age. In antiquity it was the custom to shoot arrows or hurl javelins The custom of firing cannon at the clouds to avert hail began centuries ago in Styria and northern Italy, and it was well established in France before the Revolution. Toward the end of the eighteenth century, however, another method of hail protection was introduced in France, whence it spread over the rest of Europe. This consisted in setting up tall, metal-tipped poles, imitated from lightning rods. It was supposed that these poles, which were known as paragrÊles, would draw the electric charge from the clouds and thereby (though nobody could say why) would prevent the formation of hailstones. This device, though reported on unfavorably by the French Academy of Sciences, gained great popularity. One of its advocates, writing in 1827, states that more than a million paragrÊles were at that time in use in France, Switzerland, Italy, Austria, Bavaria, and the Rhine country. The vogue enjoyed by these contrivances is said to have come to a sudden end when a tremendous hailstorm not only devastated the fields and vineyards they were supposed to protect, but also knocked down a great number of the rods themselves. In recent times both the hail cannon and the paragrÊle have been revived. The new era of “hail-shooting,” as the process of cannonading the hail clouds is called, dates from the year 1896, when a number of cannon of a new type were installed in About the year 1899 a new form of hail rod was introduced in France, and this has become the favorite means of protection against hail in that country. It is essentially a very large lightning rod of pure copper, grounded by means of a broad copper conductor. Such rods have been installed, in some cases, on church steeples and other tall edifices, including the Eiffel Tower, in Paris, and in other cases on tall steel towers erected for this purpose. This device is called fantastically an “electric Niagara,” because, according to the claims of its promoters, it draws down “torrents” of electricity from the clouds. Hundreds of these “Niagaras” have been constructed in France. Some of them are set up in rows, or so-called barrages, across the habitual paths of hailstorms. The French Government was induced to appoint a “ComitÉ de DÉfense contre la GrÊle” (Hail-protection Committee), which before In order to understand the extraordinary hold that the various hail-protecting devices have taken upon the minds of European cultivators it should be remembered that the intensive cultivation of the soil is the rule over the greater part of Europe, so that a hailstorm of relatively small extent often does enormous damage. Vineyards are especially subject to injury from this cause, and many of the richest vine-growing districts of the Old World are notoriously afflicted with hailstorms. Scientific commissions appointed by the Austrian and Italian governments conducted long series of tests of the methods of bombarding the clouds with mortars, bombs, and rockets, and declared them to be of no value. The erection of hail rods, though it has received a certain amount of official encouragement in France, is also strongly discountenanced by the majority of scientific men, as well as by a large proportion of intelligent agriculturists. Reports on the actual operation of the rods support conflicting opinions—as might be expected from the fact that the hailstorm is a decidedly erratic phenomenon. Thus, some observers claim that the storm clouds change conspicuously in appearance as they approach a “Niagara,” and if they shed hail upon the spot it is in a soft and harmless form. Others deny the accuracy of these observations, and point to the stubborn fact that ordinary hail has fallen on several of the rods themselves, including the one on the Fortunately for the farmer and the horticulturist—especially in Europe—a method of averting the losses due to hailstorms is available in the shape of insurance, and its cost is decidedly less than that entailed in systematic hail-shooting or in the general erection of hail rods. Hailstorm insurance has been extensively practiced in the Old World since the end of the eighteenth century. In some countries it has been conducted or subsidized by the government. Generally each country is divided into a number of zones, according to the recorded frequency of hailstorms, and the premiums vary proportionately. Premiums also vary for different crops, since some are better able to withstand the effects of hail than others. The amount of insurance of this kind carried in Germany, alone, shortly before the World War, was more than $800,000,000. Hailstorm insurance is fairly common in the United States, especially in the Middle West, but still lacks an adequate statistical basis in the shape of detailed records of hail frequency. In 1919 growing crops in this country were insured against hail to the extent of $559,134,000. Much information Besides the weather-making schemes already noted, mention should be made of certain more ambitious projects of this character that have been bruited from time to time, and that have found plenty of credulous supporters. In the year 1845 an American meteorologist of undoubted ability, but much inclined to the riding of hobbies—viz., James P. Espy—proposed the building of great fires in the western part of the United States in order to regulate the winds and rainfall to the eastward. The fires were to extend in a line of six or seven hundred miles from north to south, and were to be set off once a week throughout the summer. Another genius, of less celebrity, proposed to destroy blizzards by means of a line of coal stoves along the northern boundary of the country. A favorite idea of those who aspire to produce wholesale changes of climate is to alter the course of ocean currents for this purpose. One early plan contemplated the damming of the Strait of Belle Isle in order to improve the climate of New England and the Canadian provinces; while, a few years since, a proposal to build an immense jetty eastward from Newfoundland for the purpose of “protecting the warm north-flowing Gulf Stream from the onslaughts of the ice-cold, south-flowing Labrador Current” actually received, serious attention from the Congress of the United States. |