Some day the meteorologists of the world will join forces to produce a great encyclopÆdia of climate. No work of science is more sorely needed, but the magnitude that it would, ideally, assume is simply staggering. Few people realize the multiplicity and complexity of climates. It is a common occurrence for a prospective traveler or a business man to write to a meteorological establishment requesting, for example, a description of the climate of South America. Of course, no such thing exists. A continent does not have a climate, but a multitude of climates. Even to set forth, in general terms, the more important types of climate that prevail between Cape Horn and Panama is no small undertaking. Moreover, general descriptions often fail to supply the needs of those who make inquiries about climate. Suppose, instead of the wholesale order above mentioned, the meteorologist receives the relatively modest request to describe the climate of Buenos Aires or Rio de Janeiro. Is it easy to comply with such a request? That depends. If the information is sought by a tourist who wishes chiefly to know whether he will need light or heavy clothing at a specified season, or whether his excursions are likely to be hampered by frequent rains, we can enlighten Thus it appears that climate means very different things to different people. An immense amount of zeal and energy has been devoted to the study of supposed changes of climate. Evidence of such changes is sought, on the one hand, in a painstaking examination of weather records (a process often involving the tabulation of hundreds of thousands of figures), and, on the other, in the collection of geographical and historical data bearing on the question. There have been numerous reports of the gradual drying up of African and Asiatic lakes, of the discovery of ancient ruins indicating that prosperous agricultural communities once flourished in regions that are now deserts, and of various other tokens that marked vicissitudes of climate have occurred within historic times. A recent ingenious method of studying climatic variations is to measure the successive annual rings seen in cross sections of old trees. Thick rings are supposed to have been formed during periods of abundant rainfall, and thin rings when the rainfall was deficient. This method has been applied to the giant The net result of a wide range of investigations appears to be that, on the whole, climate has everywhere been remarkably constant since the dawn of human history. There is much evidence that, in certain regions, there have been alternate increases and decreases—recurrent oscillations—of temperature, rainfall, etc., but there is little evidence of progressive changes in one direction. In contrast to the uncertainty that still prevails in the scientific world on the subject of climatic changes is the confidence with which the average layman may be heard to assert that such changes have taken place within his own recollection. The popular idea that climate has changed perceptibly within a single human lifetime is a world-wide delusion, and one that has, apparently, always flourished. In the United States we hear of the “old-fashioned winter,” with its unlimited sleighing, and also of a marked increase or falling off in the rainfall in certain districts. It is an interesting fact that a century and more ago Americans were indulging in the same sort of retrospections. In the year 1770, when Benjamin Franklin was president of the American Philosophical Society of Philadelphia, a paper was read before that society entitled: “An Attempt to account for the Change of Climate which has been Observed in the Middle Colonies of North America.” It is published in the first volume of the society’s Transactions. Barring the long s’s and the use of the word “colonies,” the greater part of it might have been addressed to the owners of automobiles and Liberty bonds. We are told of a “very observable change of climate,” remarked Another firm believer in old-fashioned winters and old-fashioned summers was Thomas Jefferson. In his “Notes on Virginia,” written in 1781, he says: “A change in our climate is taking place very sensibly. Both heats and colds are become much more moderate, within the memory even of the middle-aged. Snows are less frequent and less deep. They do not often lie, below the mountains, more than one, two or three days, and very rarely a week. They are remembered to have been formerly frequent, deep, and of long continuance. The elderly inform me, the earth used to be covered with snow about three months in every winter.” Samuel Williams, who published a “History of Vermont” in 1794, uses almost identical language in reference to the climate of that State. “Snows,” he says, “are neither so frequent, deep, or of so long continuance as they were formerly; and they are yet declining very fast in their number, quantity, and duration.” That these changes, he adds, “are much connected with and greatly accelerated by the cultivation of the country cannot be doubted.” What are the facts? When the statements above quoted were written few regular records of the weather had been maintained for any length of time in this country. The earliest instrumental record was begun at Charleston, S.C., in 1730. Much information was, however, available concerning the dates of harvest, of the formation and breaking up Our memories of past weather mislead us, chiefly because we remember the exceptional weather and forget that which commonly prevailed. Other circumstances may contribute to the illusion. Thus many people who now live in cities, where modern appliances make them more or less independent of the weather, passed their childhood under the more primitive conditions of the country. If climates were not fairly constant for long periods of years, it would be a waste of time to compile the climatic statistics that, as we have seen, are wanted by so many different kinds of people for so many different purposes. Such statistics are based upon past events, but their practical value depends upon the fact that, within certain limits, they are a safe guide to the future. The climatic data for any place are a sort of digest of the meteorological observations that have been made there, special emphasis being given to those The instruments used in measuring temperature have been described in another chapter. From these instruments are obtained the current temperature of the air, the wet bulb temperature (used to compute the humidity), and the maximum and minimum temperatures of the day. Readings are made at fixed hours, known as “term hours.” At regular stations of the United States Weather Bureau the term hours for the observation of all the meteorological elements are 8 a.m. and 8 p.m., Eastern Time, and an observation of temperature, humidity, and clouds is made at noon. In most other countries tri-daily readings have been the rule, though in Europe four or more observations a day are now taken at many stations in order to supply the frequent weather bulletins required by aeronauts. Important stations are generally equipped with thermographs, which make a continuous record of temperature. Theoretically, the mean temperature of any day is the average of 24 hourly observations, from midnight to midnight. In practice, the mean is generally computed from the observations at the term hours, or from the maximum and minimum. Having obtained the mean daily temperature for each These data for each day and month, and for the year—sometimes also for other intervals, such as five-day periods, or “pentads,”—are computed year after year, and eventually the values for all the years of the record are averaged to form what are called “normals.” We thus obtain, for example, for a given station, the normal temperature for January 21, the normal temperature for the month of March, the normal annual temperature, etc. All this is a mere beginning toward the complete discussion of a body of temperature observations for the purposes of climatology. We have still to obtain from the readings of the maximum and minimum thermometers the normal maximum and minimum temperatures and range of temperature for each day, each month, and the year; also the “absolute” maxima, minima, and ranges (i. e., the extreme values that have occurred during the entire record) for corresponding intervals of time. These data furnish answers to such questions as: What was the lowest temperature ever recorded on January 21? What is the lowest on an average January 21? What is the average range of temperature in March? What was the highest temperature ever recorded, on any day, at the station? Having thus disposed of the extremes and ranges, we may compute what is called the “variability” of temperature, i.e., the average difference between the means of two successive days in a given month, and the corresponding average for the entire year. These data are of considerable importance in medical From the foregoing outline it will be seen that a bewildering variety of climatic statistics may be computed merely from observations of temperature, and the same is true of the other elements. Moreover, the list set forth above is by no means exhaustive even for temperature. In fact, there is almost no limit to the number of ways in which the raw material of climatic data—i. e., the original records of observation—may be grouped, averaged, or otherwise treated in order to bring out certain features of the climate that may conceivably serve some useful purpose. The reader will now be able to understand why a treatise on the climate of a single locality often fills a substantial volume. The numerical data contained in such a work are generally supplemented by text descriptions and by various graphic devices, such as curves showing the normal fluctuation or “march” of a weather element during a day, year, or other interval. Works 1. Temperature (isothermal) charts. These include charts showing the distribution of normal temperatures for months, seasons, and the year; normal range of temperature for similar periods; highest and lowest temperatures ever recorded at the different stations; etc. Lines known as isotherms are so drawn as to pass through places having identical values of the element in question (mean temperature, highest temperature, etc.). 2. Rainfall (isohyetal) charts. These show the distribution of rainfall (including snowfall, expressed in equivalent depth of water); especially for each month and for the year. Other charts may show the average number of rainy days; average snowfall (actual depth, not water equivalent); seasonal distribution of rainfall; etc. 3. Wind charts. These are drawn in various forms, to show the prevailing wind directions, the frequency of winds from different directions, the average force of the winds, etc. Charts of the winds at different levels above the earth’s surface will eventually be drawn for the use of aeronauts, but such charts are still in a tentative stage. As in the case of tabulated climatic data, the number of charts that might be drawn to bring out different features of climate is practically unlimited. Sunshine, cloudiness, humidity, barometric pressure, and the frequency of various special phenomena, such as thunderstorms, hail, tornadoes, droughts, Climates are variously classified, usually on the basis of one or more of the climatic elements, but sometimes with reference to their effects. The most familiar classifications refer to temperature. We speak of tropical, temperate, and polar climates; but in using these terms it should not be forgotten that other things besides latitude control the distribution of temperature. Location with respect to the ocean or other large bodies of water is almost equally important. A land surface grows warm by day and in summer, and grows cold by night and in winter, much more rapidly than a water surface, and the adjacent air varies in temperature accordingly. Hence we have a classification of climates as marine and continental. The former, under the influence of oceanic winds, have a moderate range of temperature, while the latter are subject to extremes of heat and cold. With increase of altitude temperature is diminished, but rainfall is generally increased. The distribution of rainfall is also determined to a great extent by the paths of cyclonic storms. Such are a few of the many things that control the complex distribution of climates. People who never travel far from their own homes usually cherish quite erroneous ideas regarding the climates of distant lands. It is hard for most Americans to realize, for example, that the Isthmus of Panama, in the heart of the tropics, never experiences temperatures nearly so high as those which The lowest temperatures encountered by polar explorers are considerably higher than those experienced each winter by the inhabitants of northern Siberia. The “record,” so far as instrumental observations go, is held by the town of Verkhoyansk, at which the temperature fell to 90° below zero (Fahrenheit) in February, 1892. Strange to say, Another climatic paradox is that experienced by mountaineers who, in scaling peaks mantled in eternal snow, often suffer with the heat, on account of the intensity of solar radiation in the pure, dry air of high altitudes. At the health resort of Davos, in the high Alps (altitude 5,250 feet), invalids sit out-of-doors without wraps in midwinter, and, indeed, are sometimes driven into the shade to escape the too ardent rays of the sun. At the same time the temperature of the air itself may be far below freezing, and the ground covered with snow. Certain parts of the world are often loosely described as “rainless,” but, as we have stated elsewhere, there is actually no spot on earth at which rain (or snow, in the polar regions) has never been known to fall. In the driest part of the Sahara—the Libyan Desert, between Dakhel and Kufra—the explorer Rohlfs experienced a drenching rainstorm of three days’ duration in 1874. Neither is the Sahara, in spite of its proverbial heat, exempt from touches of real winter. Snow is a common occurrence in many parts of this desert, even at moderate altitudes. On the higher Saharan peaks snow lies on the ground all winter, and is sometimes found, in sheltered spots, in summer. Occasional falls of snow occur in all parts of Algeria, and several falls have been recorded in Lower Egypt. |