One of the things a tea kettle is good for is to provide, by means of the little cloud seen at its nozzle and erroneously called “steam,” an example of what happens when the invisible gas that is truly steam, or water vapor, is cooled below its dew point in the free air. This cloud has, however, been the starting point of a vast number of halfway explanations. A generation or so ago physicists were content to say that aqueous vapor turns to drops of water in the air merely on account of being cooled. The question of how the drops get their start, or why the moisture forms drops at all, does not seem to have troubled them. One way in which air or any other gas is cooled is by expanding against pressure. Some of the energy in the gas, originally manifesting itself as heat, is applied to the work of expansion, and thus ceases to be heat. Hence the temperature of the gas falls. Conversely, if a mass of gas is compressed, the mere process of compression raises its temperature. The heat produced in pumping up a bicycle tire is the classic example of the latter fact. Heating by compression and cooling by expansion are called, respectively, “dynamic heating” and “dynamic cooling.” The processes thus described are of the utmost importance in meteorology. Perhaps it will occur to the reader that, in some obscure way, the filter has prevented water vapor itself from entering the receiver. There are several methods by which we can ascertain whether such is the case. One of the simplest is to admit a little smoke to the receiver before expanding the filtered air. In this case the cloud does form, showing that moisture is present, and also showing that smoke, though a perfectly dry substance, aids the formation of the water drops. Such experiments have led to the conclusion, now universally admitted, that when water drops form in the atmosphere they always form around “nuclei” of something that is not water. These nuclei are often referred to as “dust particles,” but it is recognized that a vast proportion of them are very much more minute than the dust that worries housewives. They are largely beyond the power of the microscope, and some of them, indeed, appear to be of molecular size, consisting of molecules of hygroscopic gases, such as the oxides of sulphur and of nitrogen. Another important fact about water drops in the atmosphere has come to light within the last half century. Since water is much heavier than air, The drops in clouds and fog have often been measured, either by noting their optical effects or by microscopic examination. Many are found to be from 0.0006 to 0.0008 inch in diameter. The speed with which such drops fall through still air can be calculated. A drop 0.0008 inch in diameter falls at the rate of about half an inch a second, or 150 feet an hour. Even if a cloud consisting of such drops preserved its integrity for an hour or more while sinking, its descent at this slow rate would hardly be perceptible from the ground. Some clouds consist of ice needles or tiny snowflakes. Apparently these icy particles are produced directly in solid form, without passing through the There are several ways in which the free air may be cooled to the point at which condensation occurs. The commonest is dynamic cooling, due to the rise of a mass of moist air and its expansion under the reduced pressure that prevails at the higher levels. This process is beautifully illustrated in the formation of the roundish masses of fleecy cloud known as cumulus, on a warm summer day. Each of these clouds marks the summit of a column of air that is rising after having been heated at the surface of the earth. When the process goes on very actively, the cloud may tower up to enormous heights, forming a thundercloud. Some clouds are formed by the mixing of air of different temperatures. Fog, which is merely cloud at the surface of the earth, is often formed by the cooling of the air in contact with cold land or water. The persistent fogs of the Newfoundland Banks are due to the passage of warm moist air from the Gulf Stream region over the Town fogs, such as the famous “London particular” and the fogs of Lyons, usually consist partly of smoke. Dense fogs of this sort occur when the conditions of the atmosphere are such as to cause the smoke to hang low over the city, instead of being dispersed. These fogs constitute a serious economic problem. Thus it is estimated that they cost the people of London upwards of half a million dollars a year, due to extra lighting, damage to vehicles, loss of business, etc. Since marine fog is also a source of enormous loss, through causing delays and accidents, and since fog along air routes is the greatest of all obstacles to successful aerial navigation, it is no wonder that much ingenuity has been devoted to the attempt to disperse fog artificially. Electric discharges have been successfully used for this purpose on a small scale. The depth of a fog may be anything from inches to miles. Measurements made by the United States Coast Guard during the international ice patrol of the North Atlantic show that the fogs on the Newfoundland Banks are very commonly so shallow that the mastheads of vessels rise above them, though in some cases they were found, from observations with kites, to be from 2,500 to 3,000 feet thick. Observations on the mountains of the California coast show The United States Weather Bureau classifies a fog as “dense” if it hides objects at a distance of 1,000 feet; otherwise it is described as “light.” British meteorologists record fogs on a scale of five degrees. During the ice patrol of the Seneca in 1915 samples of foggy air were examined for the purpose of calculating the amount of water and the number of drops they contained per unit volume, as well as the size of the drops. A block of dense fog 3 feet wide, 6 feet high, and 100 feet long was found to contain less than one-seventh of a glassful of water, distributed in 60,000,000,000 drops. During the densest fog of the voyage the diameter of the fog particles averaged 0.0004 inch; just about the limit of visibility with the naked eye. In spite of the extremely attenuated state of the water in fogs, as indicated by these figures, the moisture they deposit on terrestrial objects is great enough to be of considerable agricultural importance in some parts of the world. Thus along the coast of Peru, where the rainfall is negligible (though not, as often stated, nonexistent), a wet fog known as the “garÚa” suffices to maintain a luxuriant vegetation during several months of each year. There are frozen fogs as well as frozen clouds. The “frost smoke” that rises over the Norwegian fjords and over ice-free spots in the polar seas is generally composed of icy particles or snowflakes. An ice fog that sometimes forms in mountain valleys in the western United States is known as the “pogonip”—a name derived from the Shoshonean What meteorologists call “dry fog” is a haze of dust or smoke, sometimes very dense. We have already described the prevalence of this turbid state of the atmosphere following volcanic eruptions, the burning of forests and moors, and desert dust storms. Under the head of dry fog many writers include a sort of heat haze, which does not necessarily involve the suspension of either solid or liquid matter in the air, but is due to the mixing of local air currents of different densities, especially when evaporation is proceeding rapidly from moist ground under strong sunshine. The callina of Spain and the qobar of the upper Nile region are probably due partly to this cause, and partly to dust. One more species of fog requires mention here, viz., the dirty, foul-smelling “painter” of the Peruvian coast, which deposits on vessels lying in the harbor of Callao and elsewhere a slimy brown substance known as “Peruvian paint.” This substance comes from the ocean and is probably due to the decomposition of marine organisms. The “painter” prevails during the months December to April. According to a plausible hypothesis a change in the temperature of the water at that season, resulting from a periodical shift of ocean currents, Clouds, though they are nothing more than masses of fog situated at some distance from the earth, are susceptible of a classification, according to shape and texture, that is not applicable to fog. Among the billions of human beings who, in all ages, have amused themselves by discovering pictures in the clouds it would be remarkable if a good many had not, from time to time, conceived the idea of reducing these pictures to a few general types. According to a note published a few years ago in the “Quarterly Journal” of the Royal Meteorological Society, there is some reason to believe that an elaborate classification of the clouds was in use among the ancient Hindus. A passage quoted from an Indian work of the fourth century B.C. says: “Three are the clouds that continuously rain for seven days; eighty are they that pour minute drops; and sixty are they that appear with the sunshine.” In the occidental world, however, we have no record of any attempt to classify the clouds prior to the year 1801, when the following classification was proposed by the French naturalist Lamarck:
In 1803 the English meteorologist Luke Howard published the system of classification that, with some additions and modifications, is now in general use. This system is based upon three fundamental forms; viz., fibrous or feathery clouds (cirrus), clouds with The Latin names that Howard gave to the clouds made his system immediately available for international use; and in nearly all of the many systems of cloud nomenclature that have since been proposed the excellent plan of using Latin names has been preserved. Very soon, however, after Howard’s classification appeared, a list of proposed English equivalents of his names was published in the “EncyclopÆdia Britannica”—which, nevertheless, did not change its name to “British EncyclopÆdia”—for the benefit of the unlettered majority, supposed to be incapable of using a few Latin terms that were, in fact, shorter and no more difficult to pronounce than their suggested English substitutes! A piquant sequel to this episode is that these superfluous English cloud names, “curl cloud,” “stackencloud,” “fall cloud,” “sondercloud,” “wane cloud,” and “twain cloud,” still survive in the dictionaries—and nowhere else. They are practically unknown to meteorologists, and were never adopted generally by the laity. Of course some English names, which have been evolved and not deliberately invented, are applied to certain types of cloud in English-speaking countries; but the Latin names, comprised in the International There are ten principal types of cloud in the International Classification, and the name of each type has an official abbreviation (a great convenience for those who record the clouds from day to day). The following definitions, translated from the French text of the “International Cloud Atlas,” have been published by the British Meteorological Office: 1. Cirrus (Ci.)—Detached clouds of delicate appearance, fibrous (threadlike) structure and featherlike form, generally white in color. Cirrus clouds take the most varied shapes, such as isolated tufts of hair—i. e., thin filaments on a blue sky—branched filaments in feathery form, straight or curved filaments ending in tufts (called cirrus uncinus), and others. Occasionally cirrus clouds are arranged in bands, which traverse part of the sky as arcs of great circles, and as an effect of perspective appear to converge at a point on the horizon, and at the opposite point also, if they are sufficiently extended. Cirro-stratus and cirro-cumulus also are sometimes similarly arranged in long bands. [Certain forms of cirrus are called “mares’ tails.” The long bands crossing the sky, as just described, are known as “polar bands” or “Noah’s ark.”] 2. Cirro-stratus (Ci.-St.)—A thin sheet of whitish cloud; sometimes covering the sky completely This sheet often produces halos around the sun or moon. 3. Cirro-cumulus (Ci-Cu.) (Mackerel sky)—Small rounded masses or white flakes without shadows, or showing very slight shadow; arranged in groups and often in lines. 4. Alto-stratus (A.-St.)—A dense sheet of a gray or bluish color, sometimes forming a compact mass of dull gray color and fibrous structure. At other times the sheet is thin, like the denser forms of cirro-stratus, and through it the sun and moon may be seen dimly gleaming as through ground glass. This form exhibits all stages of transition between alto-stratus and cirro-stratus, but, according to measurements, its normal altitude is about one-half that of cirro-stratus. 5. Alto-cumulus (A.-Cu.)—Larger rounded masses, white or grayish, partially shaded, arranged in groups or lines, and often so crowded together in the middle region that the cloudlets join. The separate masses are generally larger and more compact (resembling strato-cumulus) in the middle region of the group, but the denseness of the layer varies and sometimes is so attenuated that the individual masses assume the appearance of sheets or thin flakes of considerable extent with hardly any shading. At the margin of the group they form smaller cloudlets resembling those of cirro- 6. Strato-cumulus (St.-Cu.)—Large lumpy masses or rolls of dull gray cloud, frequently covering the whole sky, especially in winter. Generally strato-cumulus presents the appearance of a gray layer broken up into irregular masses and having on the margin smaller masses grouped in flocks, like alto-cumulus. Sometimes this cloud form has the characteristic appearance of great rolls of cloud arranged in parallel lines close together (“roll cumulus”). The rolls themselves are dense and dark, but in the intervening spaces the cloud is much lighter and blue sky may sometimes be seen through them. Strato-cumulus may be distinguished from nimbus by its lumpy or rolling appearance, and by the fact that it does not tend to bring rain. 7. Nimbus (Nb.)—A dense layer of dark, shapeless cloud with ragged edges from which steady rain or snow usually falls. If there are openings in the cloud an upper layer of cirro-stratus may almost invariably be seen through them. If a layer of nimbus separates in strong wind into ragged cloud, or if small detached clouds are seen drifting underneath a large nimbus (the “scud” of sailors), either may be specified as fracto-nimbus (FR.-NB.). 8. Cumulus (Cu.) (Wool-pack cloud)—Thick cloud of which the upper surface is dome-shaped and exhibits protuberances, while the base is generally horizontal. These clouds appear to be formed by ascensional movement of air in the daytime, which is almost 9. Cumulo-nimbus (Cu.-Nb.)(The thundercloud)—Great masses of cloud rising in the form of mountains or towers or anvils, generally having a veil or screen of fibrous texture (“false cirrus”) at the top, and at its base a cloud mass similar to nimbus. From the base local showers of rain or snow, occasionally of hail or graupel, usually fall. Sometimes the upper margins have the compact shape of cumulus, or form massive heaps round which floats delicate “false cirrus.” At other times the margins themselves are fringed with filaments similar to cirrus clouds. This last form is particularly common with spring showers. The front of a thunderstorm of wide extent is frequently in the form of a large low arch above a region of uniformly lighter sky. 10. Stratus (St.)—A uniform layer of cloud, like fog, but not lying on the ground. The cloud layer of stratus is always very low. If it is divided into ragged masses in a wind or by mountain tops, it may be called fracto-stratus. The We have given the foregoing official definitions and descriptions in full in order to aid the reader as much as possible, so far as verbal information goes, in learning to call the common clouds by their names. Good pictures are, of course, an essential part of this process, and apart from those that illustrate the present text, many collections of such pictures are easy of access. Some may be obtained free or at nominal cost from the Weather Bureau in Washington and from the Meteorological Office in London. The “International Cloud Atlas” (second edition, Paris, 1910) is now out of print, but may be consulted in libraries. Of the clouds above enumerated, cirrus, cirro-cumulus, and cirro-stratus are the highest, and are always ice clouds. They consist in some cases of separate, minute crystals—a fine dust of ice—producing, according to the forms of the crystals, one or another of the various forms of halo around the sun and moon; while in other cases the crystals are aggregated in small snowflakes, so that the cloud is a real snowstorm in midair. The altitude of these clouds generally ranges from 4 to 8 miles. In the equatorial region their height is often 10 miles or more. The other main types of cloud are composed wholly or chiefly of water. Alto-cumulus and alto-stratus are clouds of medium altitude; strato-cumulus and nimbus are low clouds (generally not more than a mile high); while stratus, the lowest cloud of all, grades into fog, which commonly rests on the earth. Since cumulus and cumulo-nimbus are produced by the condensation of moisture from rising air currents, the height of their bases varies widely Besides the ten main classes of clouds, a few distinct minor varieties are recognized by all meteorologists. Among these is the “lenticular cloud”; an isolated small cloud, which frequently shows iridescence, and the shape of which has been compared to that of a lens or an almond. This cloud may remain stationary, or nearly so, but it really marks the position of a billow in a stream of air, the moisture condensing at one edge of the cloud and dissolving at the other. Another distinctive and rather rare form of cloud, seen chiefly in connection with thunderstorms, is mammato-cumulus, likewise known as “pocky cloud,” “festoon cloud,” “rain balls,” etc. It consists of numerous sacklike or udderlike protuberances, convex downward. When a stream of moist air is forced to ascend in passing over a mountain its moisture is often condensed by the process of dynamic cooling, already explained, and a “cloud cap” is seen over the summit. In local weather lore such caps are generally regarded as a sign of rain. These clouds attached to mountains were called “parasitic clouds,” by writers of a century ago, who proposed some naÏve explanations of them. Occasionally a “cloud banner” streams far to the leeward of the mountain. One of the most famous and striking of cloud caps In the case of a wind blowing athwart a ridge or mountain range, a bank of cloud may extend along the whole crest, as in the “foehn wall” that appears along Alpine heights when the foehn wind is blowing. Some day meteorology will be taught in art schools, for the same reason that anatomy now is. When that blissful day arrives painters will probably show us skies less at odds with nature than those that deface the work of artists of all degrees of celebrity, including the “old masters.” |