With the development of commerce between Europe, China, and Japan, following the awakening of the East, it became imperative to render the seas approaching these countries far safer to navigation. If one consults the atlas, and follows the routes taken by the great liners from Britain and the Continent to the Orient, he will see a rampart forming the boundary between the Indian Ocean and the South China Sea. This is the East Indian Archipelago, and it bristles with dangers of all descriptions to the mercantile traffic flowing to and fro. After leaving India, the steamships turn their noses towards Singapore, at the extremity of the Malay Peninsula; but this busy port is shut in on the south by the attenuated rocky chain of islands forming the Dutch East Indies, of which Sumatra and Java are the most important. The steamship lane lies between Sumatra and the Asian mainland, and is known as the Straits of Malacca. It is a fearsome neck of water, studded with islands and sandbanks, some visible above high-water, others revealed only by the falling tide; while still more never see daylight at all, yet owing to their shallow position are none the less perilous. In order to foster the growth of the sea-traffic with China, these unattractive waters demanded full illumination, while the rock-girt shores of China and Japan were similarly in need of protective outposts. Japan was particularly enterprising in this forward movement. The country was emerging from the state of suspended civilization in which it had reposed so calmly for centuries. The rising forces were not slow to realize that unless they safeguarded steamship traffic their ports would wait in vain for the Japan at that time had not capable men at home for the purpose of completing the first part of a comprehensive coast-lighting scheme, and it was acknowledged that years must elapse before the country would be able to walk alone in this field. Accordingly they sought Britain’s assistance. The Stevenson family, as narrated already, elaborated a comprehensive scheme, which was accepted. The structures were prepared in Britain, sent out piecemeal to Japan together with a force of competent men, and erected at the desired points. Upon this foundation the Japanese built up their excellent lighthouse service. The Eastern pupil, in his own estimation, became as competent as the Scottish teachers. At all events, Japan has since completed all works of this description at home and unaided. China followed suit, but in this instance it was due to British initiative purely and simply. The British Inspector-General of the Imperial Maritime Customs took up the question. He appointed an engineer-in-chief, to whom the construction and repair of the lights were entrusted. The chief engineer was provided with a coast inspector, upon whom devolved the responsibility for the personnel and the maintenance of the stations, he in turn being assisted in his exacting and, at that time, difficult work by a corps of zealous officers. Although the countries concerned and the shipping companies of Europe appreciated this forward policy, one class of individuals resented this introduction of Western ideas into Oriental life. This was the population who lived by wrecking and piracy. They recognized the fact only too well, that, if brilliant beacons were to be permitted to be erected freely throughout these troublous seas, their despicable but remunerative calling would cease. Their solution of the problem assumed a characteristic Chinese and Malay form; they endeavoured to wreak their revenge upon the lights. Now and again there were sharp tussles between The Malacca Straits, from their exceedingly dangerous nature, constituted a happy hunting-ground for these gentlemen, and the lighting of these waters was effected as soon as possible. Among the innumerable menaces abounding, a shoal some sixteen miles west of the coastline was particularly harassing to mariners. It became known as One Fathom Bank, and the shallowest part was only about 18 feet below the surface at high-water. When these waters were guarded first, a lightship did duty; but the position is so open, and is so exposed to the full fury of the monsoon, that she frequently dragged her anchors, so that the warning became somewhat uncertain. Accordingly, it was decided to supersede the floating light by a permanent structure, and a lighthouse on stilts, similar to those familiar to American waters, was erected in 1874, and emitted a white flash once a minute. Although this ironwork structure was pounded mercilessly by the seas, it withstood all assaults completely, and was only superseded eventually owing to the ever-increasing exigencies of commerce, which demanded a more powerful and elevated light. The present tower was commenced in 1907. The engineers appreciated the fact that they were being called upon to carry out an undertaking in an especially trying position. The bank is well out to sea, and when the monsoon is in full blast waves 8 feet in height thunder upon the shoal, their ferocity varying according to the state of the tide, which rises and falls a matter of 14 feet. The difficulties attending the building of the Rothersand and Fourteen Foot Bank lighthouses under closely similar conditions were not Therefore an alternative method of construction, possessing the qualities of being simpler, quicker, and less expensive, which was advanced by a well-known firm of engineers in Singapore, Messrs. Hargreaves, Riley and Co., upon the designs of Mr. O.P. Thomas, received the closest consideration. This scheme proposed a lighthouse constructed on piles, with the focal plane 92½ feet above water-level, wrought in ferro-concrete. The project was somewhat novel and daring, because, although this constructive principle had been adopted previously for stations upon the mainland, it had never been utilized in connection with exposed sea-lights. The system recommended was that known as the Hennebique, which had been employed extensively for buildings, bridges, sea-defences, and other works. The proposal was investigated thoroughly by the Hon. A. Murray, M.Inst.C.E., the Colonial Engineer and Surveyor-General for the Straits Settlements, and, as it met with his full approval, the work was handed over to the Singapore engineers to fulfil upon the lines advanced. The structure comprises the main building, including the living-quarters, supported upon piles disposed in two rings, an inner and an outer, about a central pile, the whole being well braced together. The shape is octagonal in plan. From the roof of the living-quarters, to which point the outer piles are carried vertically from the sea-bed, these members rise with an inward rake, forming an octagonal pyramid, with the lantern and its room below forming the apex. The underwater work was the most difficult, owing to the situation and the climatic conditions. Seeing that the nearest land is sixteen miles distant, it was impossible to carry the men to and from the scene of their labours every day when the weather permitted. A base was established The piles forming the main support to the building were made 50½ feet long, and hollow. The concrete, composed of broken granite and Portland cement, encased a steel skeleton, consisting of four longitudinal round steel rods, 1¾ inches in diameter, laid at the corners, and laced together with steel wire 3/16 inch thick. Eight of these piles were made 18 inches square, while nine were 24 inches square, and each was fitted with a pointed end to facilitate driving into the sea-bed. As these piles were prepared on shore, their transference to the site was a pretty problem in itself. Ordinary methods of transport were impracticable. The engineer overcame the difficulty in an ingenious manner. He built up a raft of barrels, twenty-six of which were lashed together in two rows, between which the pile was laid flat and evenly. The raft was built upon peculiar lines, so as to facilitate the unshipping of the pile when it reached its destination. It was divided into four sections, each of which could be detached without disturbing the other three parts. The raft and its pile were towed out to sea by a steamer, and when the work was gained the raft was cast off, to be floated under the staging and to the exact point where it was to be set up. A chain sling was lowered from the platform and attached to the head of the pile, and the lashings to the first section of the raft were released, thus permitting the strapped barrels concerned to float away and to be recovered. The pile was then slowly and carefully hoisted at the head, the second part of the raft being released when the pile had gained a certain height. This procedure was repeated until finally, when the last part of the raft was freed, the pile hung free, as vertically true as a plumb-line, with the pointed foot resting on the sand. In order to send it truly into the The piles were sunk into the soft sea-bed by means of water-jets, which, playing about the foot of the pile, burrowed a hole into which it could move downwards. A depth of 15 feet had been considered necessary to secure the desired rigidity, and as a rule the pile could be driven to this depth in about four hours. When the pile-driving commenced, however, it was found that the sandbank had undergone a marked change since the surveys were made. Erosion had been very active owing to the currents having been checked by the obstructions which the legs of the staging offered. Under these circumstances a novel experiment was made upon the site. One of the piles was lengthened by 14½ feet, to be driven to its limits, just to ascertain how far it would go into the sand. This in itself was a somewhat daring undertaking, seeing that the tiny colony on the staging did not possess the facilities which were available on shore for the work. However, it was accomplished satisfactorily, and when the pile was sunk it was found to descend another 13½ feet, where it touched hard rock. This discovery brought about a modification in the plans. As a solid foundation could be gained at a depth of 28½ feet, and as the piles could be lengthened successfully upon the site, it was decided to extend all the piles to a complete length of 64½ feet, and to drive them down to the hard bottom. When the piles were all lowered, they were subjected to four blows from a “monkey” weighing 2½ tons, dropped from a height of 4 feet. But these four final blows only drove the piles from ¼ to 7/8 inch farther into the sea-bed, whereas, according to the specification, a margin of 1 inch was allowed for this test. The diameter of the tower at the base is 40 feet, and heavy bracing is introduced at a point 4 feet below high-water to hold the fabric together, and to supply the requisite strength and rigidity. At a height of 21 feet above this main The lantern, which weighs 17½ tons, is of the modern type, and is more powerful than that of the 1874 light, which it displaced. The white light is thrown in groups of flashes every fifteen seconds, and the warning is visible from the deck of a vessel some fifteen miles away. The central pier, which carries a great proportion of the total weight of the tower, and which extends continuously from the bed-rock foundation to the lantern-room, is solid to the roof of the living-quarters. Above this point it is hollow, having a bore of 12 inches, and in this space the weight actuating the revolving mechanism of the light moves up and down. Although the idea was novel at the time, the complete success of the work justified the recommendations of the designers as to the suitability of this form of construction for open-sea lighthouses. In this instance the enterprise not only was completed for a less sum than would have been required for a corresponding lighthouse erected in masonry Another fine light which has been provided for the benefit of the navigator in these Eastern seas is that on Gap Rock. This is a rugged, lofty eminence, rising from the sea, thirty-two miles south of Hong-Kong. Being exposed on all sides, it is difficult to approach, while at the same time it lies in the path of vessels. A few years ago the Hong-Kong Government decided to conquer this islet, and to deprive it of its perils to shipping. With great effort a landing was effected, and one of the pinnacles was decapitated and levelled off, to form a spacious platform for landing. The light itself rises from the highest point of the rock, and its rays are visible through a circle of twenty miles radius. The Gap Rock light is also a signal-station, being in telegraphic communication with Hong-Kong. Although the days of human hostility to the lighthouse in Eastern waters have passed, the engineer is confronted by an enemy which is in every way as destructive. This is the white ant. The ravages of this insect are so relentless and complete where wood is concerned that timber towers are quite impracticable. Moreover, this material has to be used only sparingly for fittings, even in masonry and iron buildings. A curious experience with this insidious and implacable foe was related to me by a lighthouse engineer. He was engaged in the erection of a new beacon at a remote point In due course the cases with their precious contents reached the site of erection, but unfortunately the season was so far advanced that the engineer concluded he could not complete the erection of the lantern before the monsoon broke. As the contents of the cases were preserved by the tin armour from climatic attacks, he stored the cases securely, and with his workmen left the place until favourable weather returned. Some weeks later the chief and his toilers reappeared upon the scene. All preparations for setting the optical apparatus were completed. Imagine the dismay of the engineer when, on opening the case containing the most important parts of the lantern, he found that it had been raided by white ants. They had driven their tracks spirally through the tow, which evidently they had enjoyed, and although this was of little consequence, the formic acid had played sad havoc with the bright surfaces of the spindles. In lighthouse engineering the surfaces of these parts must be as bright and as clean as a mirror to insure smooth, steady working. But now these spindles were as pitted and marked as a victim to smallpox. It was a maddening contretemps, since the only way to restore the vital bright surfaces was to turn them in the lathe. Such a tool was not available within a hundred or more miles. Erection had to be delayed, however, until this treatment was effected. Seeing that the tin case was soldered up with such infinite care, the question arises. How did the ants get into it? To the engineer it seemed an inscrutable puzzle, but he subjected |