Barren ruggedness, ragged reefs, and towering cliffs form an apt description of the north and west coasts of Scotland, and he is a prudent navigator who acknowledges the respect which these shores demand, by giving them a wide berth. The Norwegian coast is serrated, the island of Newfoundland may be likened to the battered edge of a saw, but Scotland is unique in its formation. The coastline is torn and tattered by bays and firths, with scattered outlying ramparts. The captain of a “tramp” who has sailed the seven seas once confessed to me that no stretch of coastline ever gave him the shivers so badly as the stretch of shore between Duncansby Head and the Mull of Kintyre. Certainly a ship “going north about” is menaced every mile of her way between these two points unless she takes a very circuitous course. If the weather conditions are favourable and daylight prevails, the North of Britain may be rounded through the narrow strait washing the mainland and the Orkney Islands, but the Pentland Firth is not an attractive short-cut. The ships that run between Scandinavian ports and North America naturally follow this route, as it is several hundred miles shorter than that via the North Sea and English Channel; but they keep a sharp eye on the weather and are extremely cautious. When the Pentland Firth is uninviting, they may either choose the path between the Orkneys and the Shetlands, or, to eliminate every element of risk, may stand well out to sea, and round the most northern stretches of the Shetlands. These are lonely seas, comparatively speaking, and yet are well lighted. Although a wicked rock lies in the centre of the eastern entrance to the Pentland channel, it is indicated by the The majority of lighthouses have been called into existence by the claims of commerce purely and simply. But it was not so with the North Unst lighthouse, as the beacon crowning this pinnacle is called. War was responsible for its creation, though probably sooner or later the requirements of peace would have brought about a similar result. While the armies of France and Britain were fighting the Russians in the Crimea, the British fleet was hovering about these waters, watching the mouth of the Baltic, so as to frustrate any attempts on the part of the Russian fleet to dash around the northern coast of Scotland. In those days these lonely seas were badly lighted, and the Admiralty realized only too well the many perils to which the warships were exposed while cruising about the pitiless coasts of the Orkneys and Shetlands. Accordingly, the department called upon the Commissioners of Northern Lighthouses to mark Muckle Flugga. Time was everything, and the engineers were urged to bring a temporary light into operation with the least delay. The engineers hurriedly evolved a tower which would meet the Government needs. It was thought that the extreme height of the rock would lend itself to the erection of a building which, while possible of early completion, would be adequate for subsequent purposes. The materials for the light, together with a lantern, and a second building for the storage of the oil and other requisites, were shipped northward from Glasgow. Simultaneously the engineers, with another small gang of men who had already reached the rock, pushed on with the preliminary preparations, so The engineers tried the rock from all sides to find a safe landing. This was no light matter, owing to the steepness of the slope even upon the easiest face of the pinnacle. The attempt represented a mild form of mountaineering, for the sea had battered away the projection of the lower-lying levels, and the men found it trying to effect a foothold, even in stepping from the boat on to the rock. They had to climb hand over hand up the precipice, with life-lines round their waists, taking advantage of every narrow ledge. With infinite labour they gained the summit, and then they found that there was just sufficient space, and no more, upon which to plant the lighthouse buildings. The top was cleared quickly, and then the advance party set to work to improve the landing-place on the south side of the rock for the reception of the building materials. A small site was prepared with great difficulty, as the tough rock offered a stern resistance to the chisels, drills, and wedges; while in addition the men had to cut steps in the flank of the rock to facilitate the ascent to the site. On September 14, 1854, the constructional vessel Pharos hove in sight, and, the weather being favourable, the landing of the material was hurried forward. The men had to become pack-animals for the time, carrying the loads on their backs. In this manner they tramped laboriously up and down the cliff-face with material and stores of all descriptions. The heavier and bulkier parts were hauled up by rope and tackle, a few feet at a time, and this task was quite as exacting. In all, 120 tons were conveyed to the top of the crag. Construction was hastened just as feverishly, and on October 11, 1854, twenty-six days after the Pharos anchored off Muckle Flugga, the North Unst light shone out for the first time. This is probably one of the most brilliant exploits that has ever been consummated in connection with lighthouse engineering, the merit of which is additionally impressive from the fact that almost everything had to be accomplished by manual effort. But it is during this season that the winds from the north, lashing the sea to fury, create huge rollers which thunder upon the base of the pinnacle to crawl up its perpendicular face in the form of broken water and spray. The men standing on the brink often watched these rollers, but never for a moment thought that one would be able to leap to a height of nearly 200 feet and sweep over the rock. The December gales dispelled this illusion very convincingly. One morning the workmen, while breakfasting in their warm shelter, received a big surprise. A terrific blow struck the door, which flew open as if hit by a cannon-ball. It was followed instantly by a three-foot wall of water. The broken wave rushed round the apartment, seething and foaming, and then out again. The workmen were dumbfounded, but had scarcely recovered from the shock when another roll of water came crashing in and gave the apartment another thorough flushing out. One of the Scottish workmen vouchsafed the remark that the man responsible for cleaning the floors that day would be spared his job, but he was silenced when, a few seconds later, another angry sheet of water dropped on the roof of the building and threatened to smash it in. The closing month of that year was particularly boisterous. Time after time when the sea rose, the lighthouse tower was drenched in water. One might think it impossible that a wave could get up sufficient impetus to mount a height of 200 feet; but this experience offered conclusive In a way, the terrifying experience of these marooned workmen was invaluable. They reported the bare facts to the engineers upon the first opportunity, and this intelligence brought about a revision in the designs for the permanent masonry structure. The present North Unst lighthouse is a massive masonry building, standing in the centre of the small flat space on the top of the pinnacle, with heavy masonry walls bounding it on all sides. The tower is 64 feet in height, while the red and white light may be seen from a distance of twenty-one miles in clear weather. That the winter storms of 1854 were by no means exceptional has been proved up to the hilt on several occasions since. When the nor’-wester is roused thoroughly, the breaking waves curl up the cliff and rush over the lantern. Such a climb of 260 feet conveys a compelling notion of the force of the sea. The weight of the water thrown into the air has threatened to overthrow the massive boundary walls, while now and again the invader leaves tangible evidences of its power by smashing the windows of the lantern. Upon one occasion it burst open the heavy door, which weighs the best part of a ton. The light-station is served by four keepers, two on duty simultaneously, their homes being on the island of Unst, four miles away. For the conveyance of water, fuel, provisions, and other requirements, from the landing-stage to the lighthouse 200 feet above, an inclined railway has been provided on the easier slope, so that the men are no longer called upon to pack their provisions, like mules, from the water-level up a steep cliff, as was formerly required. Rounding these island dangers, the navigator picks up the light of Cape Wrath, glimmering from a height of 370 feet above the water-level and standing at the western corner of the rectangular head of the Scottish mainland. Going south, he has two passages available—the inner, which extends through the Minches and inside the Hebrides; I have described the Skerryvore light in the previous chapter; but nineteen and a half miles to the south-east of the latter is another reef, just as exposed, which is as perilous in every respect. Indeed, it may be said to constitute a greater menace to the navigation of these waters, since it lies in the cross-roads of the entrance to the Irish Channel, the Firth of the Clyde, and the Minches. A powerful light mounts guard on the Rhins of Islay, twenty-seven miles due south, but between the latter and Skerryvore there are forty-three miles of coast, as dangerous as the mariner could wish to avoid, with this rock looming up almost halfway. This peril is the Dhu-Heartach, lying out to sea in deep water, fourteen miles from the nearest point of the mainland. The physical configuration of the sea-bed at this point is somewhat similar to that prevailing at Skerryvore. The Ross of Mull tumbles abruptly into the Atlantic, to reappear out to sea in the form of the Torrin Rocks, which run for a distance of four and a half miles in the direction of Dhu-Heartach. Then the reef comes to a sudden stop, to be seen once more, nine miles farther out, in the rounded hump of Dhu-Heartach, this being practically the outermost point The situation is peculiar, and the engineers, Messrs. D. and T. Stevenson, were faced with a somewhat perplexing problem recalling those which had arisen in conjunction with the Skerryvore, not far distant. Indeed, the Dhu-Heartach undertaking might very well be described as a repetition of those struggles, with a few more difficulties of a different character thrown in. The rock itself in reality is a series of islets, or hummocks, surrounding the main hump, which is 240 feet in length by 130 feet in breadth, the highest point of the rounded top being 35 feet above high-water at ordinary spring-tides. On all sides the lead marks very deep water, the result being that in times of storm and tempest the rollers of the Atlantic, having a “fetch” of some 3,000 miles or more, thunder upon it with terrific force, the broken water leaping high into the air. It is very seldom that the rock can be approached even in a small boat and with a calm sea, as the hump is invariably encircled in a scarf of ugly surf. The swell strikes the western face of the rock, is divided, flows round the northern and southern ends of the obstruction, and reunites on the eastern side. Consequently the rock is nearly always a centre of disturbance. The distance of the rock from the mainland complicated the issue very materially. A suitable site had to be prepared on shore as a base, where the stones could be prepared for shipment, while a special steam-tender was necessary to run to and fro. The handling of the workmen had to be carried out upon the lines which were adopted at Skerryvore—namely, the erection of a barrack upon a skeleton framework on the rock, where the men might be left safely for The authority to commence operations was given on March 11, 1867, and this year was devoted to completing preparations, so that in the following season work might be started in earnest and carried on throughout the summer at high pressure. The first task was the erection of the barrack on the rock. The workmen got ashore for the first time on June 25, 1867, and, although landing at all times was trying and perilous, attempts often having to be abandoned owing to the swell, the engineer succeeded in landing twenty-seven times up to September 3, when work had to be suspended until the following year. Despite the shortness of the season, the men made appreciable headway. The iron framework of the barrack was completed to the first tier, while a good beginning was made upon the rock-face in connection with the foundations for the lighthouse. When the autumnal gales approached, everything in connection with the barrack was left secure, the builders being anxious to ascertain how it would weather the winter gales and the force and weight of the waves which bore down upon it. The engineers finally decided upon a tower 107½ feet in height. After trying various curves for the outline, they came to the decision that a parabolic frustum would afford the most serviceable design, as well as providing the maximum of strength. A diameter of 36 feet was chosen for the base, tapering gradually and gracefully to one of 16 feet at the top, with the entrance 32 feet above the base, to which point the cone was to be solid. The arrangements were that work should be resumed in the early spring of 1868, so as to secure full advantage of the favourable easterly winds. Accordingly, when the special steam-tender arrived on April 14, she was loaded up with On June 29 the wind moderated sufficiently to enable the men to be landed, but the climatic conditions remained adverse. The wind refused to swing round to the east; a westerly swell was the luck day after day. The engineers had to dodge the ocean as best they could, and some idea of the handicap under which they laboured may be gathered from the fact that only four landings were made during the sixty-one days of May and June. July enabled the greatest number of landings to be effected—thirteen; while during August and September the men only gained the rock on twenty-one occasions, making a total of thirty-eight landings in the course of 153 days. During this interrupted season, however, the barrack was completed. It was a massive structure, and resembled a huge iron barrel secured endwise upon an intricate arrangement of stilts which were heavily stayed and tied together by diagonals and cross-members. In the two previous instances where a similar arrangement had been adopted the temporary dwelling had been wrought in wood, but on this occasion the engineers decided to adopt iron, as they concluded that a wooden structure would not fare well One interesting incident serves to illustrate the perils to which the workmen were exposed. A date had been set down when all the men were to be brought off the rock for the season, as the approach of the equinox rendered further toil extremely doubtful, and there was no intention of unduly imperilling them. The engineer’s resident representative, Mr. Alexander Brebner, went out to the rock on August 20, the day fixed for the suspension of operations, to inspect the progress that had been made and to have a last look round. At the time of his arrival the weather was beautifully calm, and held out every promise of remaining settled for several days. As the season had been so adverse, he decided, on his own responsibility, to delay the cessation of toil, so, with the thirteen men, he remained on the rock, determined to make up leeway somewhat while the weather held out. But the resident paid the penalty for his disobedience. The little party retired that night with the stars shining brilliantly overhead from a cloudless sky, and with the sea like a mirror. In the middle of the night one and all were roused suddenly from their slumbers. The wind was roaring, and the breakers were hammering upon the rock, while the foam and surf rushed violently between the legs of the barracks. When the men looked out they were confronted with a terrifying spectacle. The night was black as pitch, but the sea white as a snow-covered plain, from the crests of the rollers and the surf playing on and around the rocks. A furious gale had sprung up with the characteristic suddenness of the Atlantic, and was already raging. The next morning no one dared to venture outside the iron home, Their fears rose almost to frenzy when a breaker, leaping the rock, drove full tilt against the floor of the barrack. In this upward rush of 55 feet the building suffered. The men’s entrance to the home was by means of a heavy hatch, or trapdoor, which was bolted securely upon the inside. This particular comber burst in the hatch as if it were no thicker than the wood of a matchbox, flooding the whole compartment. Meantime the engineer-in-chief at Edinburgh had heard of the incident. He had given strict instructions that the men should be brought off on August 20, and when the intelligence was communicated to him that his order had been disobeyed, and that his men were in serious straits, he became distracted. He knew only too well how the waves bombard Dhu-Heartach. Mr. David Stevenson related to me how his father paced the offices during the day, and his own home at night, unable to drown his thoughts in work or sleep. His worry was intensified as the true character of the gale came to his ears. He had planned everything with such care that neither life nor limb of a single workman need be jeopardized, and here he was confronted with the possibility of losing fourteen men at one stroke! The iron barrack, although staunchly constructed, was just as likely as not to succumb to the full brunt of a very vicious sou’-wester, so there was every excuse for his anxiety. He gave orders that the steam-tender was to stand by with steam raised, so as to make a dash for the rock upon the first opportunity. The year 1869 was kinder to the engineers, and great headway was made. The men were able to make their first landing on the rock as early as March 25, and it was accessible up to October 29, when all forces withdrew from the scene for the winter. During this period sixty landings were effected, while heavy supplies of masonry and other materials were shipped to the site. The masons took up their permanent residence in the barrack on April 26, and did not leave it until September 3, while they were able to squeeze in 113 days of toil, with a welcome rest from their labours on Sundays. The excavations for the foundations were completed speedily, and on June 24 the erection of the tower was commenced. The stones were brought ready for setting in position, and were laid so rapidly that by the end of the month two courses were completed and the third had been well advanced. Then came a temporary setback. A blusterous summer gale sprang up, and the sea, after assaulting the rock for two days, succeeded in leaving its mark. The crane and other tackle at the landing-stage were washed away, while fourteen stones laid in the third course were uprooted, of which eleven were seen no more. The water in this case had to leap upwards for 35½ feet, while the stones which it carried away weighed 2 tons apiece, and were firmly joggled, so that the wrench which displaced them must have been terrific indeed. If a summer gale could wreak such damage, what was the dreaded equinox likely to achieve? The engineers were so The tower contains six floors above the entrance hall, these, on ascending the spiral staircase, being as follows: oil-store, kitchen, provision-store, bedroom, dry-room, and light-room. The masonry part of the work was completed by the end of the season of 1871, and the first-order dioptric, fixed, white light was exhibited on November 1, 1872. The focal plane, being 145 feet above the water-level, has a range of eighteen nautical miles. The total cost of the work was £76,084, or $380,420, of which sum the shore station was responsible for £10,300, or $51,500. The ocean made an attempt to defeat the workmanship and skill of the engineers in the very winter following the opening of the lighthouse. On the lee side of the tower there is a copper lightning-conductor, 1 inch thick by 1½ inches wide, which is let into a channel cut in the stonework, so that it comes flush with the face of the building. This conductor is fixed at intervals of 5 feet in a substantial manner. The winter storms of 1872 tore some 10 feet out of this channel near the base of the structure, and wrenched the screws from their sockets; while at the kitchen window level, which is 92 feet above high-water, the rod was similarly disturbed for some distance. It will be seen that the waves which assail Dhu-Heartach are by no means to be despised. |