The last notable war of the nineteenth century has falsified the anticipations of nearly all the makers of small arms. The magazine rifle was held to be so perfect in its trajectory, and in the rapidity with which it could discharge its convenient store of cartridges in succession, that the bayonet charge had been put outside of the region of possibility in warfare. Those who reasoned thus were forgetting, to a large extent, that while small arms have been improving so also has artillery, and that a bayonet charge covered by a demoralising fire of field-pieces, mortars, and quick-firing artillery is a very different thing from one in which the assailants alone are the targets exposed to fire. Given that two opposing armies are possessed of weapons of about equal capacity for striking from a distance, they may do one another a great deal of harm without coming to close quarters at all. Yet victory will rest with the men who have sufficient bravery, skill Smoke-producing shells and other forms of projected cover, designed to mask the advance of cavalry and infantry, will greatly assist in the work of rendering this task of crossing the fire-zone less dangerous, notwithstanding any possible improvement that may be effected in the magazine-rifle. Already it has been observed that much of the surprise and confusion which terrifies those who have no bayonets, when subjected to a cannonade and at the same time brought face to face with a bayonet charge, arises from the fact that they cannot see to shoot straight, owing to the haze produced by the smoke and its blinding effects upon the eyes. Special smoke-producing shells, made for the express purpose of covering a charge, will soon be evolved from the laboratory of the chemist in pursuance of this clue. In addition to shells and other missiles, small pieces of steel-piping will be projected by mortars into the fire-swept zone, in order to supplement the defects of natural cover which, of course, are nearly always as great as possible, seeing that the ground has generally been selected by the side against which the attack is being directed. The task of enabling a rifleman to shoot This baffling of the rifleman by the artillery supporting the cavalry and bayonet charge will produce momentous changes, not only in the future of war, but also in that of international relations. Anything which tends to discount the value of personal bravery and to elevate the tactics of the ambuscade and the sharp-shooting expedition gives, pro tanto, an advantage to the meaner-spirited races of mankind, and places them more or less in a position of mastery over those who hold higher racial traditions. The man who will face the risk of being shot in the open generally belongs to a higher type of humanity than he who only shoots from behind cover. Moreover, the nations which have the skill and ingenuity to manufacture new weapons of Another potent element in the safeguards of civilisation may be seen in the increased effectiveness of weapons for coastal defence. The hideous nightmare of a barbarian irruption, such as those which almost erased culture and intellect from the face of Europe during the dark ages of the fourth, fifth and sixth centuries, may occasionally be seen exercising its influence in the pessimistic writings which are from time to time issued from the Press predicting the coming ascendency of the yellow man. The most effective naval weapon in the future will undoubtedly be the torpedo, but, like the bayonet, it requires to be in the hands of brave men before its value as the ultimate arbiter of naval conflict can be demonstrated. Much fallacious teaching has arisen from what has been called the lessons of certain naval wars which occurred on the coasts of South America and China—international embroilments in which mercenaries, or only half-trained seamen and engineers, were engaged. On similar fallacious grounds it was argued Fifty miles an hour is a rate which is already in sight as the speed of the future torpedo-boat, the first turbine steamer of the British Navy having achieved forty-three miles an hour before the end of the nineteenth century. It should be distinctly understood, however, that such a speed cannot be kept up for any great length of time and that long voyages are out of the question. The rÔle of the turbine torpedo-boat will be to "get home" with its weapon in the shortest practicable time. Hence its great value for the defence of harbours by striking at distances of perhaps two or three hours' steaming. On the high seas the battle-ships, which will virtually be the cruisers of the future, will be provided with turbine torpedo-boats, carried slung in convenient positions and ready at short notice to be let slip like greyhounds. During the hazardous run of the torpedo-boat For harbour defence and the safety of the battle-ship the wire-guided and propelled torpedo will form a second line behind the fast torpedo-boat. This type of weapon strikes with more unerring accuracy than any other yet included in the armoury of naval warfare, because it is under the control of the marksman from the time of its launching until it fulfils its deadly mission. Its range, of course, is strictly limited; but it may be worked to advantage within the distances at which the best naval artillery can be depended upon to make good practice. The least costly and the lightest form is that The submarine boat will have some useful applications in peace; but its range of utility in warfare is likely to be very limited. It is hopeless to expect the eyes of sailors to see any great distance under the water; therefore the descent must be made within sight of the enemy, who has only to surround himself with placed contact-torpedoes hanging to a depth, and to pollute the water in order to render the assault an absolutely desperate enterprise. A balloon is at the mercy of the wind and must remain so, while a true flying machine, which supports itself in the air by the operation of fans or similar devices, may be interesting as a toy, but cannot have much economical importance for the future. When man has the solid earth upon which to conduct his traffic, without the necessity of overcoming the force of gravitation by costly power, he would be foolish in the extreme to attempt to abandon the advantage which this gives him, and to commit himself to such an element as the air, in which the power required to lift himself and his goods would be immeasurably greater than that needed to transport them from place to place. The amount of misdirected ingenuity that has been expended on these two problems of submarine and aerial navigation during the nineteenth century will offer one of the most Nations may at times be infected with this unpractical vainglory of inventiveness; and on these occasions there is need of all the restraining influence of the hard-headed business man to prevent the waste of enormous sums of money. The idea that military ascendency in the future is to be secured by the ability to fly through the air and to dive for long distances under the water has taken possession of certain sections in France, Germany, More important to the student of the practical details of naval preparation is the great question as to the point at which the contest between shot and armour will be brought to a standstill. That it cannot proceed indefinitely may be confidently taken for granted. The plate-makers thicken their armour while the gun-makers enlarge the size and increase the penetrative power of their weapons, until the weight that has to be carried on a battle-ship renders the attainment of speed practically impossible. Meanwhile there is going forward, in the hull of the vessel itself, a gradual course of evolution which will eventually place the policy of increasing strength of armour and of guns at a discount. The division of the The most advanced naval architects of modern times are bestowing more and more attention upon this feature, as affording a prospect of rendering ships unsinkable, whether through accidents or through injury in warfare. No doubt, for merchant steamers, it will be seen that development along the lines already laid down in this department will suffice for all practical purposes. The water-tight bulkheads, with readily closed or automatically shutting doorways, ensure the maintenance of buoyancy in case of any ordinary accident from collision or grounding, while the duplication of engines, shafts and propellers—without which no steamship of the middle twentieth century will be passed by marine surveyors as fit for carrying passengers on long ocean voyages—will make provision against all excepting the most extremely improbable mishaps to the machinery. If the numerical estimate of the chance of the disablement of a single engine and its propeller during a certain voyage be stated When we come to consider the evolution of the warship as compared with that of the merchant steamer, we are at once confronted with the fact that the infliction of injury upon the boilers, the engine, or the propellers of a hostile vessel is the great object aimed at by the gunners. The evolution of the warship in the direction of ensuring safety, therefore, will not stop at the duplication of the engines, boilers and propellers. In fact it must sooner or later be apparent that the interests of a great naval power demand the working out of a type of warlike craft that shall be almost entirely destitute of armour, but constructed A torpedo-boat built on this system may consist essentially of a series of steel tubes of large section grouped longitudinally, and divided into compartments like those of a bamboo cane. Each of these has its own small but powerful boilers and engines, and each its separate propeller at the stern. Care also is taken to place the machinery of each tube in such a position that no two are abreast. In fact, the principle of construction is such as to render just as remote as may be the possibility of any shot passing through the vessel and disabling two at the same time. If a boat of this description has each tube furnished not only with a separate screw at the stern, but also with a torpedo at the bows, it can offer a most serious menace to even the most powerful battle-ship afloat, because its power of "getting home" with a missile depends not upon its protective precautions, but upon an appeal to the law of averages, which makes it practically impossible for any gunners, however skilful, to disable all its independent sections during the run from long range to Or this class of naval fighter may be regarded as a combined fleet of small torpedo-boats, bound together for mutual purposes of offence and defence. Singly, they would present defects of coal-carrying capacity, sea-going qualities, and accommodation for crew which would render them comparatively helpless and innocuous; but in combination they possess all the travelling capacities of a large warship, conjoined with the deadly powers at close quarters of a number of torpedo boats, all acting closely in concert upon a single plan. The chief naval lesson taught during the Spanish-American War was the need for improving the sea-going qualities of the torpedo-boat before it can be regarded as a truly effective weapon in naval warfare. It was announced at one stage that if the Spanish torpedo-boat fleet could have been coaled and re-coaled at the Azores, and two or three other But when the naval architect and the engineer have evolved a class of torpedo-using vessel which can both travel far and strike hard, and which, moreover, can stand a few well-directed shots penetrating her without succumbing to their effect, a new era will have been opened up in naval warfare—an era of high explosive weapons requiring to strike home with dash and bravery in spite of risk from shot and shell; but, like the bayonet on land, capable of overthrowing all war-machines which can only strike from a considerable distance. |