Muscular power still carries out all the most laborious work of the farm and of the garden—work which, of course, consists, in the main, of turning the land over and breaking up the sods. In the operations of ploughing, harrowing, rolling, and so forth, the agency almost exclusively employed is the muscular power of the horse guided by man-power; with the accompaniment of a very large and exhausting expenditure of muscular effort on the part of the farmer or farm labourer. On the fruit and vegetable garden the great preponderance of the power usefully exercised must, under existing conditions, come direct from the muscles of men. Spade and plough represent the badges of the rural workers' servitude, and to rescue the country residents from this old-world bondage must be one of the chief objects to which invention will in the near future apply itself. The miner has to a very large extent escaped from the thraldom of mere brute-work, or In farming and horticulture the field of labour is not so narrowly localised as it is in mining. Work representing an expenditure of hundreds of thousands of pounds may be carried out in mines whose area does not exceed two or three acres; and it is therefore highly remunerative to concentrate mechanical power upon such enterprises in the most up-to-date machinery. But the farmer ranges from side to side of his wide fields, covering hundreds, or even thousands, of acres with Yet the course of industrial evolution, which has made so much progress in the mine and the factory, must very soon powerfully affect agriculture. Already, in farming districts contiguous to unlimited supplies of cheap power from waterfalls, schemes have been set on foot for the supply of power on co-operative principles to the farmers of fertile land in America, Germany, France, and Great Britain. One necessity which will most materially aid in spurring forward the movement for the distribution of power for rural work is the requirement of special means for lifting water for irrigation, more particularly in those places where good land lies very close to the area that is naturally irrigable, by some scheme already in operation but just a little too high. Here it is seen at once that power means fertility and consequent wealth, while the lack of it—if the climate be really dry, as in the It is from this direction, rather than from the wide introduction of steam-ploughs and diggers, that the first great impetus to the employment of mechanical power on the farm may be looked for. The steam-plough, no doubt, has before it a future full of usefulness; and yet the slow progress that has been made by it during a quarter of a century suggests that, in its present form—that is to say while built on lines imitating the locomotive and the traction-engine—it cannot very successfully challenge the plough drawn by horse-power. More probable is it—as has already been indicated—that the analogy of the rock-drill in mining work will be followed. The farmer will use an implement much smaller and handier than a movable steam-engine, but supplied with power from a central station, either on his own land or in some place maintained by co-operative or public agency. Just as the miner pounds away at the rock by means of compressed air or electricity, brought to his For the ploughing of a field by the electric plough a cable will be required capable of being stretched along one side of the area to be worked. On this will run loosely a link or wheel connected with another wire wound upon a drum carried on the plough and paid out as the latter proceeds across the field. For different grades of land, of course, different modes of working are advisable, the ordinary plough of a multifurrow pattern, with stump-jumping springs or weights, being used for land which is not too heavy or clayey; a disc plough or harrow being applicable to light, well-worked ground; and the mechanical spade or fork-digger—reciprocating in its motion very much like the rock-drill—having its special sphere of usefulness in wet and heavy land. In any case a wide, gripping wheel is required in front to carry the machine forward and to turn it on reaching the end of the furrow. The wire-wound drum is actuated by a spring which tends to keep it constantly wound up, Not only in the working, but also in the manuring, of the soil the electric current will play an important part in the revolution in agriculture. The fixing of the nitrogen from the atmosphere in order to form nitrates available as manure depends, from the physical point of view, upon the creation of a sufficient heat to set fire to it. The economic bearings of this fact upon the future of agriculture, especially in its relation to wheat-growing, seemed so important to Sir William Crookes that he made the subject the principal topic of his Presidential Address before the British Association in 1898. The feasibility of the electrical mode of fixing atmospheric nitrogen for plant-food has been demonstrated by eminent electricians, the famous Hungarian inventor, Nikola Tesla, being among the foremost. The electric furnace is just as readily applicable for forcing the combination of an intractable element, such as nitrogen, with other materials suitable Cheap power is, in this view, the great essential for economically enriching the soil, as well as for turning it over and preparing it for the reception of seed. Nor is the fact a matter of slight importance that this power is specially demanded for the production of an electric current for heating purposes, because the transmission of such a current over long distances to the places at which the manurial product is required will save the cost of much transport of heavy material. The agricultural chemist and the microbiologist of the latter end of the nineteenth century have laid considerable stress upon the prospects of using the minute organisms which attach themselves to the roots of some plants—particularly those of the leguminaceÆ—as the means of fixing the nitrogen of the atmosphere, and rendering it available for the plant-food of cereals which are not endowed with the faculty of encouraging those bacteria which fix nitrogen. High hopes have been based upon the prospects of inoculating the soil over wide areas of land with small quantities of sandy loam, taken from patches The hope that any striking revolution may be brought about in the practice of agriculture by a device of this kind must be viewed in the light of the fact that, while the scientists of the nineteenth century have demonstrated, partially at least, the true reason for the beneficial effects of growing leguminous plants upon soil intended to be afterwards laid down in cereals, they were not by any means the first to observe the fact that such benefits accrued from the practice indicated. Several references in the writings of ancient Greek and Latin poets prove definitely that the good results of a rotation of crops, regulated by the introduction of leguminous plants at certain stages, were empirically understood. In that more primitive process of reasoning which proceeds upon the assumption post hoc, ergo propter hoc, the ancient agriculturist was a past-master, and the chance of gleaning something valuable from the field of common observation Modern improvements in agriculture will probably be, in the main, such as are based upon fundamental processes unknown to the ancients. By the word "processes" it is intended to indicate not those methods the scientific reasons for which were understood—for these in ancient times were very few—but simply those which from long experience were noticed to be beneficial. Good husbandry was in olden times clearly understood to include the practice of the rotation of crops, and the beneficial results to be expected from the introduction of those crops which are now discovered to act as hosts to the microbes which fix atmospheric nitrogen were not only observed, but insisted upon. From a scientific point of view this concurrence of the results of ancient and of modern observation may only serve to render the bacteriology of the soil more interesting; but, from the standpoint of an estimate of the practical openings for agriculture improvements in the near future, it greatly dwarfs the prospect of any epoch-making change actually founded upon the principle of the rotation of crops. It is, indeed, conceivable that fresh light on the life habits of the minute organisms This view of the limited prospects of practical microbiology for the fixing of nitrogen in plant-food was corroborated by Sir William Crookes in the Presidential Address already cited. He said that "practice has for a very long time been ahead of science in respect of this department of husbandry". For ages what is known as the four course rotation had been practised, the crops following one another in this order—turnips, barley, clover and wheat—a sequence which was popular more than two thousand years ago. His summing up of the position was to the effect that "our present knowledge leads to the conclusion that the much more frequent growth of clover on the same land, even with successful microbe-seeding and proper mineral supplies, would be attended with uncertainties and difficulties, because the land soon becomes what is called clover-sick, and turns barren". In regard to any practical application of microbe-seeding, the farmers of the United Kingdom at the end of the nineteenth century had not, in the opinion of this eminent chemist, reached even the experimental stage, although on the Continent there had been some extension In the electrical manures-factory the operations will be simply an enlargement of laboratory experiments which have been familiar to the chemist for many years. Moist air, kept damp by steam, is traversed by strong electric sparks from an induction coil inside of a bottle or other liquor-tight receiver, and in a short time it is found that in the bottom of this receptacle a liquid has accumulated which, on being tested, proves to be nitric acid. There is also present a small quantity of ammonia from the atmosphere. Nitrate of ammonia thus formed would in itself be a manure; but, of course, on the large scale other nitrates will be formed by mixing the acid with cheap alkalies which are abundant in nature, soda from common salt, and lime from limestone. In this process the excessive heat of the electric discharge really raises the nitrogen With dynamos driven by steam-engines, the price of electrically-manufactured nitrate of soda would, according to the estimate of Sir William Crookes, be £26 per ton, but at Niagara, where water power is very cheap, not more than £5 per ton. Thus it will be seen that the cheapness of power due to the presence of the waterfall makes such a difference in the economic aspects of the problem of the electrical manufacture of manurial nitrates as to reduce the price to less than one-fifth! It must be remembered that at the close When wave-power and other forms of the stored energy of the wind have been properly harnessed in the service of mankind, the region around Niagara will only be one of thousands of localities at which nitrogenous manures can be manufactured electrically at a price far below the present cost of natural deposits of nitrate of soda. From the power stations all around the coasts, as well as from those on waterfalls and windy heights among the mountains, electric cables will be employed to convey the current for fixing the nitrogen of the air at places where the manures are most wanted. The rediscovery of the art of irrigation is one of the distinguishing features of modern But the future of agriculture will very largely belong to a class of men who will combine in themselves the best attributes of the irrigationist All this points to an immense recrudescence of irrigation in the near future. Already the Californians and other Americans of the Pacific Slope have demonstrated that irrigation is a practice fully as well suited to the requirements of a thoroughly up-to-date people as it has been for long ages to those of the "unchanging East". But here again the question of cheap power obtrudes itself. The Chinese, Hindoos and Egyptians have long ago passed the stage at which the limited areas which were irrigable by gravitation, without advanced methods of In a system of civilisation in which transport costs so little as it does in railway and steam-ship freights, the patches of territory which can be irrigated by water brought by gravitation from the hills or from the upper reaches of rivers are comparatively easy of access to a market. This fact retards the advent of the time when colossal installations for the throwing of water upon the land will be demanded. When that epoch arrives, as it assuredly will before the first half of the twentieth century has been nearly past, the pumping plants devoted to the purposes of irrigation will present as great a contrast to the lifting appliances of the East as does a fully loaded freight train or a mammoth steam cargo-slave to a coolie carrier. At the same time there must inevitably be a great extension of the useful purposes to which small motors can be applied in irrigation. Year by year the importance of the sprinkler, not only for ornamental grounds such as lawns and flower-beds, but also for the vegetable patch and the fruit garden, becomes more apparent, The "tree-doctor" will be a personage of increasing importance in the rural economy of the twentieth century. He is already well in sight; but for lack of capital and of a due For the destruction of almost all classes of fruit-pests, the only really complete method now in sight is the application of a poisonous gas, such as hydrocyanic acid, which is retained by means of a gas-proof tent pitched around each tree. No kind of a spray or wash can penetrate between bark and stem or into the cavities on fruit so well as a gaseous insecticide The waste of effort and of wealth involved in planting trees and assiduously cultivating the soil for the growth of poor crops decimated by disease is the prime cause of the dearness of fruit. If, therefore, it be true that the fruit diet is one which is destined to greatly improve the average health of civilised mankind, it is obvious that the tree-doctor will act indirectly as the physician for human ailments. When this fact has been fully realised the public estimation in which economic entomology and kindred sciences are held will rise very appreciably, and the capital invested Very long tents, capable of covering not merely one tree each, but of including continuous rows stretching perhaps from end to end of a large orchard, will become practically essential for up-to-date fruit-culture. An elongated tent of this description, covering a row of trees, may be filled with fumes from a position at the end of the row, where a generating plant on a trolley may be situated. At the opposite end another trolley is stationed, and each movable vehicle carries an upright mast or trestle for the support of the strong cable which passes along the row over the tops of the trees and is stretched taut by suitable contrivances. Attached to this cable is a flexible tube containing a number of apertures and connected at the generating station with the small furnace or fumigating box from which the poisonous gases emanate. Along the ground at each side of the row are stretched two thinner wires or cables which hold the long tent securely in position. The method of shifting from one row to another is very simple. Both trolleys are moved into their new positions at the two ends of a fresh row, the fastenings of the tent at the ground on the further side having been released, so that As progress is made from one row to another through the drawing of one flap over the other, it is obvious that the tent turns inside out at each step, and if only one cable and one tube were used, it would be difficult to avoid permitting the gas to escape into the outer air at one stage or another. But when the tubes are duplicated in the manner described, there is always one which is actually within the tent no matter what position the latter may be in. It is then only necessary that the connection with the generating apparatus at the end of the row should be made after each movement with the tube which is inside the tent. For very long rows of trees the top cable needs to be supported by intermediate trestles besides the uprights at the ends. |