The existing keen motor-car rivalry presents one of the most interesting and instructive mechanical problems which are left still unsolved by the close of the nineteenth century. The question to be determined is not so much whether road locomotion by means of mechanical power is practicable and useful, for, of course, that point has been settled long ago; indeed it would have been recognised as settled years before had it not been for the crass legislation of a quarter of a century since which deliberately drove the first steam-motors off the road in order to ensure the undisturbed supremacy of horse traffic. The real point at issue is whether a motor can be made which shall furnish power for purposes of road locomotion as cheaply and conveniently as is already done for stationary purposes. Horse traction, although extremely dear, possesses one qualification which until the present day has enabled it to outdistance its mechanical competitors upon ordinary roads. When the unit of nominal horse-power was fixed at 33,000 foot-pounds per minute the work contemplated in the arbitrary standard was supposed to be such as a horse could go on performing for several hours. It was, of course, well recognised that any good, upstanding horse, if urged to a special effort, could perform several times the indicated amount of work in a minute. Nevertheless the habit of reckoning steam-power The explosive type of engine was next called into requisition to do battle against the living competitor of the engineer's handiwork. Petroleum and alcohol, when volatilised and mixed with air in due proportion, form explosive mixtures which are much more nearly instantaneous in their action than an elastic vapour like steam held under pressure in a boiler, and liberated to perform its work by comparatively slow expansion. The petroleum engine, as applied to the automobile, does its work in a series of jerks which provide for the unequal degrees of power required to cope with the unevenness of a road. As against this, however, there are certain grave defects, due mainly to the use of highly inflammable oils vapourised at high temperatures; and these have impressed a large proportion of engineers with a belief that, in the long run, either electricity or steam will win the day. Storage batteries are well adapted for meeting the exigencies of the road, just as they are for those of tramway traffic, because, as soon as an extra strain is to be met, there is always the resource of coupling up fresh The chance of the steam-engine being largely adopted for automobile work and for road traffic generally depends principally on the prospects of inventing a form of cylinder—or its equivalent—which will enable the driver to couple up fresh effective working parts of his machinery at will, just as may be done with storage batteries. A new form of steam cylinder designed to provide for this need will outwardly resemble a long pipe—one being fixed on each lower side of the vehicle—but inwardly it will be divided into compartments each of which will have its own separate piston. Practically there will thus be a series of cylinders having one piston-rod running through them all, but each having its own piston. Normally, this machine will run with an admission of steam to only one or two of the cylinders; but when extra work has to be done the other cylinders will be called into requisition by the opening of the steam valves So heavy are the storage batteries needed for electric traction of the road motor-car that practically it is not found convenient to carry enough of cells to last for more than a twenty-mile run. The batteries must then either be replaced, or a delay of some three hours must occur while they are being recharged. The idea of establishing charging stations at almost every conceivable terminus of a run is quite chimerical; and, even if hundreds of such The best hope for the storage battery on the automobile rests upon its convenience as a repository of reserve power in conjunction with such a prime motor as the steam-engine. A turbine worked by a jet of steam, as already described, and moving in a magnetic field to generate electricity for storage in a few cells, is a convenient form in which steam and electricity can be yoked together in order to secure a power of just the type suitable for driving an automobile. In the machine indicated the supply of the motive power is direct from the storage batteries, which can be coupled up in any required number according to the exigencies of the road. Automatic gear may be introduced by an adaptation of the principle already referred to. In a light road-motor for carrying one or two persons on holiday trips or business rounds, the quality of adaptability of the source of power to the sudden demands due to differences of level in the road is not so absolutely essential as it is in traction engines designed for the transport of goods over ordinary In the road traction-engine the need for what may be termed effort on the part of the mechanism is much greater, more especially as the competition against horse-traction is conducted on terms so much more nearly level. A team of strong draught-horses driven by one man on a well-loaded waggon is a far more economical installation of power than a two-horse buggy carrying one or two passengers. The asphalt and macadamised tracks which are now being laid down along the sides of roads for the convenience of cyclists, are the significant forerunners of an improvement destined to produce a revolution in road traffic during the twentieth century. When automobiles The tyranny of the railway station will then be to a large extent mitigated, and suburban or country residents will no longer be practically compelled to crowd up close to each station on their lines of railroad. Under existing conditions many of those who travel fifteen or twenty miles to business every day live just as close to one another, and with nearly as marked a lack of space for lawn and garden, as if they lived within the city. The bunchy nature of settlement promoted by railways must have excited the notice of any intelligent observer during the past twenty or thirty years—that is to say since the suburban railroad began to take its place as an important factor in determining the locating of population. To a very large extent the automobile will be rather a feeder to the railway than a rival In an ordinary railroad the functions of the iron or steel rails are twofold, first to carry the weight of the load, and second to guide the engine, carriage or truck in the right direction. Now the latter purpose—in the case of a rail-track never used for high speeds, especially in going round curves—might be served by the adoption of a very much lighter weight of rail, if only the carrying of the load could be otherwise provided for. In fact, if pneumatic-tyre wheels, running on a fairly smooth asphalt track, were employed to bear the weight of a vehicle, there would then be no need for more than one guide-rail, which might readily be fixed in the middle of the track; but this should preferably be made to resemble the rail of a tram rather than that of a railroad. To execute this movement, of course, the motor wheels for the guide-tracks must be mounted on entirely different principles from those adapted for railroad traffic. The broad and soft tyred wheels which bear upon the A simpler plan, particularly adapted for roads which are to have only a single guide-rail, is to place the rail at the off-side of the track, and to raise it a few inches from the ground. The wheels for the rail are attached to arms which can be raised and lifted off the rail by the driver operating a lever. Guiding irons, forming an inverted Y, are placed below the bearings of the wheels to facilitate the picking up of the rail, their effect being that, if the driver places his vehicle in approximately the position for engaging the side wheels with the rail and then goes slowly ahead, he will very quickly be drawn into the correct alignment. Of course the rails for this kind of The asphalt track and its equivalent will be the means of bringing much nearer to fulfilment the dream of having "a railway to every man's door". Many such tracks will be equipped with electric cables as well as guiding-rails, so that cars with electric motors will be available for running on them, and the power will be supplied from a publicly-maintained station. Some difficulty may at first be experienced in adjusting the rates and modes of payment for the facilities thus offered; but a convenient precedent is present to hand in the class of enactment under which tramway companies are at present protected from having their permanent ways used by vehicles owned by other persons. Practically the possession of a vehicle having a flanged wheel and a gauge exactly the same as that of the tram lines in the vicinity may be taken to indicate an intention to use the lines. Similarly a certain relation between the positions of guiding wheels and those of the connections with cables may be held to furnish evidence of liability to contribute towards the maintenance of motor-tracks. Road-motors, comfortably furnished, will therefore be mounted upon low railway trucks of special construction, designed to permit of their being run on and off the trucks from the level of the ground. The plan of mounting a road vehicle upon a truck suited to receive it has already been adopted for some purposes, notably for the removal of furniture and similar goods; and it is capable of immense extension. An express train will run through on the leading routes from which roads branch out in all directions, and as it approaches each When a similar system has been fully adapted for the conveyance of goods by rail and road experiments will then be commenced, on a systematic basis, with the object of rendering possible the picking up of packages, and even of vehicles, without stopping the train. The most pressing problem which now awaits solution in the railway world is how to serve roadside stations by express trains. "Through" passengers demand a rapid service; while the roadside traffic goes largely to the line that offers the most frequent trains. In the violent strain and effort to combine these two desiderata the most successful means yet adopted have been those which rely upon the destruction of enormous quantities of costly engine-power by means of quick-acting brakes. The amount of power daily converted into the mischievous heat of friction by the brakes on some lines of railway would suffice to work the whole of the traffic several times over; but the sacrifice has been enforced by the public demand for a train that shall run fast and shall yet stop as frequently as possible. In picking up and setting down mail-bags a system has been for some years in operation The occasionally urgent demand for the sending of parcels in a similar manner has set many inventive brains to work on the problem of extending the possibilities of this system, and there seems no reason to doubt that before long it will be practicable to load some classes of small, and not readily broken, articles into trucks or vans while trains are in motion. The root idea from which such an invention will spring may be borrowed from the sliding rail and tobogganing devices already introduced in pleasure grounds for the amusement of those who enjoy trying every novel excitement. A light and very small truck may be caused to run down an incline and to throw itself into one of the trucks comprising a goods train. The method of timing the descent, of course, will only be definitely ascertained after careful calculation and experiments designed to determine what length of time must elapse between Foot-bridges over railway lines at wayside stations will afford the first conveniences to serve as tentative appliances for the purpose indicated. From the overway of the bridge are built out two light frameworks carrying small tram-lines which are set at sharp declivities in the directions of the up and the down trains respectively, and which terminate at a point just high enough to clear the smoke-stack of the engine. The small truck, into which the goods to be loaded are stowed with suitable packings to prevent undue concussion, is held at the top of its course by a catch, readily released by pressure on a lever from below. The guard's van is provided at its front end with a steel, upright rod carrying a cross-piece, which is easily elevated by the guard or his assistant in anticipation of passing any station where parcels are to be received by projection. At the rear of the van is an open receptacle communicating by a door or window with the van itself. At the instant when the steel cross-piece comes in contact with the lever of the catch, which holds the little truck in position on the elevated footbridge, the descent begins, On a larger scale, no doubt in course of time, a somewhat similar plan will be brought into operation for causing loaded trucks to run from elevated sidings and to join themselves on to trains in motion. One essential condition for the attainment of this object is that the rails of the siding should be set at such a steep declivity that, when the last van of the passing train has cleared the points and set the waiting truck in motion by liberating its catch, the rate of speed attained by the pursuing vehicle should be sufficiently high to enable it to catch the train by its own impetus. It may be found more convenient on some lines to provide nearly level sidings and to impart the necessary momentum to the waiting truck, partly through the propelling agency The wire-rope tramway has hitherto been used principally in connection with mines situated in very hilly localities. Trestles are erected at intervals upon which a strong steel rope is stretched and this carries the buckets or trucks slung on pulley-blocks, contrived so as to pass the supports without interference. A system of this kind can be worked electrically, the wire-rope being employed also for the conveyance of the current. But an inherent defect in the principle lies in the fact that the wire-rope dips deeply when the weight passes over it, and thus the progress from one support Hitherto the wire-rope tramway has been usually adopted merely as presenting the lesser of two evils. If the nature of the hills to be traversed be so precipitous that ruinous cuttings and bridges would be needed for the construction of an ordinary railway or tramway line, the idea of conveyance by wire suggests itself as being, at least, a temporary mode of getting over the difficulty. But a great extension of the principle of overhead haulage may be expected as soon as the dipping of the load has been obviated, and the portion of the moving line upon which it is situated has been made rigid. A strong but light steel framework, placed in the line of the drawing-cable, and of sufficient length to reach across two of the intervals between the The weight-carrying wire-rope is thus dispensed with, and the installation acquires a new character, becoming, in point of fact, a moving bridge which is drawn across its supports and fits into the grooves in the wheels surmounting the latter. The carriage or truck may be constructed on the plan adopted for the building of the longest type of modern bogie carriages for ordinary railways, the tensile strength of steel rods being largely utilised for imparting rigidity. We now find that instead of a railway we have the idea of what may be more appropriately called a "wheelway". The primitive application of the same principle is to be seen in the devices used in dockyards and workshops for moving heavy weights along the ground by skidding them on rollers. Practically the main precaution observed in carrying out this operation is the taking care that no two rollers are put so far apart that the centre of gravity of the object to be conveyed shall have passed over one before the end has come in contact with the next just ahead of it. The "wheelway" itself will be economical in proportion as the length of the rigid carriage or truck which runs upon it is increased. For mining and other similar purposes, the long tubal "wheelway" trucks of this description can be drawn up an incline at the loading station so as to be partially "up-ended" in position for receiving the charges or loads of mineral or other freight. After this they can be despatched along the "wheelway" on the closing of the door at the loading end. In regard to the mode of application of the power in traction, the shorter-distance lines may serve their objects well enough by adopting the endless wire-rope system at present used on many mining properties. But it is found in practice that for heavy freight this endless cable traction does not Electric traction must, in the near future, displace such a cumbrous system, and the plan upon which it will be applied will probably depend upon the use of a steel cable along which the motor-truck must haul itself in its progress. This cable will be kept stationary, but gripped by the wheels and other appliances of the electric motors with which the long trucks are provided. Besides this there must also be the conducting cables for the conveyance of the electric current. For cheap means of transport in sparsely-developed country, as well as in regions of an exceptionally hilly contour, the "wheelway" has a great future before it. Ultimately the system can be worked out so as to present an almost exact converse of the railway. The rails are fixed on the lower part of the elongated truck, one on each side; while the wheels, placed at intervals upon suitable supports, constitute the permanent way. The Probably the development of transport on the principles indicated by the evolution of the ropeway or wire-rope tramway will take place primarily in connection with mining properties, and for general transport purposes in country of a nature which renders it unsuitable for railway construction. This applies not merely to hilly regions, but particularly to those long stretches of sandy country which impede the transport of traffic in many rich mining regions, and in patches separating good country from the seaboard. In the "wheelway" for land of this character the wheels need not be elevated more than a very few feet above the ground, just enough to keep them clear of the drift sand which in some places is fatal to the carrying out of any ordinary railway project. The conception of a truck or other vehicle that shall practically carry its own rail-road has been an attractive one to some inventive minds. In sandy regions, and in other places where a railway track is difficult to maintain, A carriage of this kind was worked for some time on the Landes in France. The track was virtually a kind of endless band which ran round the four wheels, bearing a close resemblance to the ramp upon which the horse is made to tread in the "box" type of horse-gear. Several somewhat similar devices have been brought out, and a gradual approach seems to have been made towards a serviceable vehicle. A large wheel offers less resistance to the traction of the weight upon it than a small one. The principal reason for this is that its outer periphery, being at any particular point comparatively straight, does not dip down into every hollow of the road, but strikes an average of the depressions and prominences which it meets. The pneumatic tyre accomplishes the same object, although in a different way, the weight being supported by an elastic surface which fits into the contour of the ground beneath it; and the downward pressure being balanced by the sum total of all the resistant forces offered by every part of the tyre which Careful tests which have been made with pneumatic-tyred vehicles by means of various types of dynamometer have proved that, altogether apart from the question of comfort arising from absence of vibration, there is a very true and real saving of actual power in the driving of a vehicle on wheels fitted with inflated tubes, as compared with the quantity that is required to propel the same vehicle when resting on wheels having hard unyielding rims. So far as cycles and motor-cars are concerned, this is the best solution of the problem of averaging the inequalities of a road that has yet been presented; but when we come to consider the making of provision for goods traffic carried by traction engines along ordinary roadways, the difficulties which present themselves militating against the adoption of the pneumatic principle—at any rate so long as a cheap substitute for india-rubber is undiscovered—are practically insurmountable. Large cart wheels of the ordinary type are much more difficult to construct than small ones, besides being more liable to get out of order. The advantages of a large over a small wheel in reducing the amount of resistance offered by rough roads have long been recognised, Let the wheel consist of a very small truck-wheel running on the inside of a large, rigid steel hoop. The latter must be supported, to keep it from falling to either side, by means of a steel semi-circular framework rising from the sides of the vehicle and carrying small wheels to prevent friction. We now have a kind of rail which conforms to the condition already mentioned, namely, that of being capable of being laid down in front of the wheel of the truck or vehicle, and of being picked up again when the weight has passed over any particular part. The hoop, in fact, constitutes a rolling railway, and the larger it can with convenience be made, the nearer is the approach which it presents to a straight railway track as regards the absence of resistance to the passing of a loaded truck-wheel over it. The method of applying the rolling hoop, more particularly as regards the question whether two or four shall be used for a vehicle, Traction engines carrying hoops twenty feet in height, or at any rate as high as may be found compatible with stability when referred to the available width on the road, will be capable of transporting goods at a cost much below that of horse traction. The limit of available height may be increased by the bringing of the two hoops closer to each other at the top than they are at the roadway, because the application of the principle does not demand that the hoops should stand absolutely erect. Similar means will, no doubt, be tried for the achievement of a modified form of what has been dreamt of by cyclists under the name of a unicycle. This machine will resemble a A traction-engine and automobile which can run across broad, almost trackless plains at the rate of fifteen miles an hour will bring within quick reach of civilisation many localities in which at present, for lack of such communication, rough men are apt to grow into semi-savages, while those who retain the instincts of civilisation look upon their exile as a living death. It will do more to enlighten the dark places of the earth than any other mechanical agency of the twentieth century. |