A good deal of theorising has been expended in accounting for the absence of all but traces of an atmosphere and water on the moon, which might have been avoided had astronomers not caught up the notion, and stuck to it, that it rotates on its axis once for every revolution that it makes round the earth. It might be difficult to find out with whom the notion originated; but perhaps it was first conceived to be the case by some celebrated astronomer, and has been accepted by almost all his successors without being properly looked into. Any one who chose to take the trouble to study the matter thoroughly, would have easily discovered that the moon can have no rotation of any kind on its axis, and immediately afterwards have found out the reason why nothing beyond (1) Sir John Herschel, in his "Treatise on Astronomy," new edition of 1835, says at page 230: "The lunar summer and winter arise, in fact, from the rotation of the moon on its own axis, the period of which rotation is exactly equal to its sidereal revolution about the earth, and is performed in a plane 1° 31´ 11´´ inclined to the ecliptic, and therefore nearly coincident with her own orbit. This is the cause why we always see the same face of the moon, and have no knowledge of the other side." (2) In his "Poetry of Astronomy," page 187, Mr. Proctor says: "For my own part, though I cannot doubt that the substance of the moon once formed a ring around the earth, I think there is good reason for believing that when the earth's vaporous mass, receding, left the moon's mass behind, this mass must have been already gathered up into a single vaporous globe. My chief reason for thinking this is, that I cannot on any other supposition find a sufficient explanation of one of the most singular characteristics of our satellite—her revolution on her axis in the same mean time, exactly, as she circuits around the earth." (3) Professor Newcomb, in his "Popular Astronomy," 5th edition, 1884, at page 313, has what follows: "The most remarkable feature in the motion of the moon is, that she makes one revolution on her axis in the same time that she revolves around the earth, and so always presents the same face to us. In consequence, the other side of the moon must remain for ever invisible to human eyes. The reason for this peculiarity is to be found in the ellipticity of her globe." Then he enlarges upon and confirms the fact of her rotation. (4) Mr. George F. Chambers, in his "Handbook of Astronomy," 4th edition, 1889, says at page 119, Vol. I.: "In It may be necessary, to avoid misconception, to note that angular velocity on its axis confirms rotation; and what is more extraordinary, that Chambers must have thought that its angular velocity on its axis must have increased and diminished in order to agree with its increased and diminished velocities in its elliptic orbit at its perigee, apogee, and quadratures. A rather strange notion in mechanics where there is no provision made for acceleration or retardation of rotation. (5) Dr. Samuel Kinns, in "Moses and Geology," twelfth thousand, 1889, says at page 208, "the same side of its (the moon's) sphere is always towards us. This could only happen by its having an axial rotation equal in period to its orbital revolution, which is 27d. 7h. 43m. 11s." (6) In the "Story of the Heavens," Sir Robert S. Ball informs us, in the fifteenth thousand, 1890, page 530, "That the moon should bend the same face to the earth depends immediately on the condition that the moon should rotate on its axis in precisely the same period as that which it requires to revolve around the earth. The tides are a regulating power of the most unremitting efficiency to ensure that this condition should be observed." (7) And finally we have what follows from Messrs. Newcomb and Holden, at page 164 of their work already referred to at page 27, "The moon rotates on her axis in the same time and in the same direction in which she moves around the earth. In consequence, she always presents very nearly the same face to the earth." And in a footnote to this consequence, add: "This conclusion is often a pons asinorum to some who conceive that, if the same face of the moon is always presented to the earth, she cannot rotate at all. The difficulty arises from a misunderstanding of the difference between a relative and an absolute rotation. It is true that she does not rotate relatively In six of the above cases it is distinctly maintained that the moon rotates once on its axis in the same time that it makes one revolution round the earth, and that it is in consequence of this rotation that it always presents the same side to the earth. Thus we feel authorised to conclude that their authors did either believe that it does so rotate, or that they entertained some confused idea on the subject, which they did not take the trouble to examine properly, but accepted as a dogma, because some predecessor, with a great name, had stated that such rotation was necessary in order that its same side should be always turned towards the earth. In the seventh case the authors, while actually making the same assertion, try to persuade those who they acknowledge can see that the moon does not rotate on its axis in any sense, that their difficulty in comprehending what is meant by rotation, arises from the misunderstanding of the difference between an absolute rotation and one relative to a line drawn to a fixed star. But they do not attempt to show how this relative rotation has anything to do with or has any effect in causing the moon to present always the same side to the earth; and leave the story in the same confused state, out of which nobody can draw any satisfactory conclusion. Also, though they distinctly recognise that it does not rotate relatively to a line drawn from the surface of the earth to its centre, they do not include in their general description of the moon anything in any way connected with what would be the consequences of its not really rotating on its axis relatively to the earth. So they leave us the problem in much the same state as they found it, and it is still necessary to show that there can be no actual rotation of any kind on its axis; and the worst of it is that it is a thing that will have to be done in such very plain language that it will compel people to think of the absurdity of the idea so generally accepted. To begin, it is very difficult to comprehend what the authors, above alluded to, meant by saying that the moon "must rotate relative to a fixed line, or a line drawn to a fixed No one has ever said, or perhaps even thought, that a gin-horse makes one rotation on his vertical axis, in the same time as he makes a circuit round his ring, but, all the same, he keeps his same side always towards the gin, or mill, he is giving motion to. The proof that he does not make any such rotation is easy—no proof is really required. But, suppose he is giving motion to a whim for raising ores from a mine, and that his motion is what is called direct. When the cage containing the ore is brought to bank, is emptied, and has to be lowered into the mine again, the horse has then to reverse his motion to retrograde, in doing which he has to make a half rotation on his vertical axis, and turn his other side to the whim. When again the cage has to be raised to bank, he has to resume his direct motion, for which he has to make another half rotation on his vertical axis, but it is this time in the opposite direction. Thus it is shown that he can only make half rotations, under any circumstances, on his axis, and these Now, we may begin to consider what effects must be produced by the moon not rotating on its axis, and we can do so most easily by continuing to work with our gin horse, or some equivalent substitute. It would not cost a great deal of ingenuity to plant a steam engine in the centre of the mill he is supposed to be driving, and to drive with it not only the mill but the horse also at the end of his lever. There might be some dissipation—Professor Tate would call it degradation—of energy in such an experiment, but we could get over that by making divina Palladis arte a wooden horse. We might arrange the steam-engine so as to cause the mill to make 27-1/3 revolutions for one made by our wooden horse, and so have a sort of a model of the earth and moon performing their most important relative motions. Then, having got our model ready for action, instead of filling it armato milite we might fill it half full of water. We fill it only half full, because the armed soldiers could not lie on the top of each other in the other horse, and there would be a vacant space above them for air, thus making the resemblance between the two the more similar; and also because it suits our purpose better, as will soon be seen. We have still to propose that a lot of holes should be supposed to be made in the sides of our horse all round, just a little higher than between wind and water. Here the idea very naturally occurs to any one, that so great a velocity would drive both air and water away, even from the far off side of the moon, into space, but in order to do so the velocity would have to be 120, not 38, miles per minute. Our authority for this statement will be found in "The Nineteenth Century," for August 1896, in an article A velocity of 10,600 feet per second is as near 120 miles per minute as there is any use for, which is more than three times as great as the velocity of the moon in its orbit, so there is no possibility whatever of air and water having been swept away from the far off side of it by centrifugal force; more especially as it ought to be well known that that force is always counteracted by the attractive force of the satellite for these or any other elements. We do not want to discuss the point of whether the mutual collisions of the molecules of a gas could get up such a velocity as would enable them to free themselves from the attraction of the moon, for it looks to us too much like one of those notions that are got up to account for something that does not exist; but we do want to state our dissent to the conclusion—evidently jumped at—that because there are hardly any signs of there being air or water on our side of the moon, there can be none on the other. No astronomer, physicist, scientist of any kind, can prove that there is none, simply because he has never been round there to see or make experiments to prove it; and if there is any one bold enough to make such an assertion, it is only an example of how stupendous a jump to a conclusion can be made. When we first read, many years ago, some of the reasons given for there being no water visible on the side of the moon constantly turned to the earth, one of which was that if there ever had been any it must have been absorbed into its body during the process of cooling and consolidation; and when we had convinced ourselves, by placing two oranges on two ends of a wire and revolving the one round the other, that the moon did not rotate on its axis in any sense whatever, we came to the conclusion that both water and air could be removed to the far off hemisphere by centrifugal force. We thought this so simple, so self-evident, and so indisputable an explanation, that every one who had read what we had read must have come to the same conclusion; so that we were not a little surprised when we saw it stated by "The Times" of September 15, 1893, in its first report of the meeting of the British Association for that year, that Sir Robert Ball had suggested, some time previously, that the "absence of any atmosphere investing the moon is a simple and necessary consequence of the kinetic theory of gases." This at once made us suspect that the theory—our theory—must have been new, but we could not altogether believe it. It seemed to us passing strange that it should not have occurred to astronomers, from the moment they discovered that they could not find any, or hardly any, traces of air or water on the only hemisphere they could examine; but it would appear from Sir Robert Ball's suggestion, being even discussed at that meeting, that the notion of their having been removed simply by centrifugal force to the unseen hemisphere, had never been entertained by, to say the least, any one who was present at that discussion. Not satisfied with this conclusion, we proceeded to examine all the books, journals, magazines, and papers we could get hold of, to see whether we could find any indication of such a conception having been published previously, and the nearest approach to anything of the kind having been conceived of by anyone, we found in Chambers's work—already referred to—at page 134, Vol. I., where we read, "Professor Hansen has recently started a curious theory from which he concludes What Professor Newcomb's objections to the conclusions of Hansen were we do not know, but we do know that Mr. Proctor also objected to the "curious theory," as it is called by Mr. Chambers. In his "Poetry on Astronomy," he discusses pretty fully the withdrawal of water from the surface of the moon during the process of cooling and condensation, ascribing the conception of it to four independent authors, namely, Seeman, a German geologist, Frankland in England, Stanislas Mennier in France, and Sterry Hunt in America; and in a footnote, at page 163, says of Hansen's theory: "The idea was that the moon, though nearly spherical, is sometimes egg-shaped, the smaller end of the egg-shaped figure being directed towards the earth. Now, while it is perfectly clear that on this supposition the greater part of the moon's visible half would be of the nature of a gigantic elevation above the mean level, and would, therefore, be denuded (or might be denuded) of its seas and denser parts of the air covering it, yet it is equally clear that all around the base of this Had the idea of centrifugal force ever occurred to Mr. Proctor, he could not have written this last sentence; for he could not have failed to see that "the border of the visible lunar hemisphere" would be the very place, from which it could most easily remove air and water, after they had got so far down the monstrous elevation; because there it—the centrifugal force—would be acting at right angles to the moon's attraction, instead of having to contend against it, as it would have to do in a constantly increasing degree until it arrived at its maximum, just in proportion to the distance the air and water got down to the similar monstrous depression on the other hemisphere, down which the gradient would start off under the most favourable circumstances possible. From what has been said, it is very evident that neither Hansen, Chambers, Proctor, nor any of those whose names have been mentioned by the last, in connexion with the withdrawal of water into the body of the moon by absorption, while cooling and condensing, had ever thought of the possibility of air and water having been removed by centrifugal force from the side of the moon turned towards the earth. That it should not have occurred to Hansen seems passing strange, seeing that he had conceived the idea of their possible existence on the hemisphere turned away from the earth, which could hardly fail to make him think of how they got there, and could exist only there; and the only explanation of his not having perceived the true cause seems to be, that his thoughts were hampered by a sort of confused notion that the moon actually rotates on its axis once for every revolution it makes around the earth, that being, as it were, one of the dogmas of astronomic belief, handed down from We do not want to question the suggestion, that the absence of any atmosphere investing the moon is a simple and necessary consequence of the kinetic theory of gases—though we see that a good deal could be argued against it—as we do not consider it to be necessary—neither the questioning nor the theory. We have demonstrated clearly, how both air and water could be removed from the side of the moon constantly shown to us, and that is sufficient for our purpose both now and later on; besides it would appear that the moon really has some sort of an atmosphere somewhere. Following up the quotation, made at page 39, from Prince Kropotkin's article in the "Nineteenth Century" as being the latest information we have on the subject, we are told that "a feeble twilight is seen on our satellite, and twilight is due, as is known, to the reflection of light within the gaseous envelope; besides it has been remarked long since at Greenwich that the stars which are covered by the moon during its movements in its orbit remain visible for a couple of seconds longer than they ought to be visible if their rays were not slightly broken as they pass near the moon's surface. Consequently it was concluded that the moon must have an atmosphere" ... and: "The observations made at Lick, Paris, and Arequipa, fully confirm this view. A twilight is decidedly visible at the cusps of the crescent-moon, especially near the first and last quarters. It prolongs the cusps as a faint glow over the dark shadowed part, for a distance of about 70 miles (60"), and this indicates the existence of an atmosphere having on the surface of the moon the same density as our atmosphere has at a height of about forty miles." What is of interest for us to know is where that "feeble twilight," or, "reflection of light within the gaseous envelope," is seen. Whether it is at what Mr. Proctor calls "the border of the visible lunar hemisphere," on this side of it, or beyond it. It cannot be a difficult matter to decide. It must be beyond it, for the following reasons: If the atmosphere has been driven away to the far-off hemisphere of the moon by In order to make more clear the truth of what we have said about water and air—and more especially the latter—being thrown away to the far-off side of the moon by centrifugal force, we may add the following details: If the force of gravity at its surface is one-sixth part of what it is at the surface of the earth, the pressure of an atmosphere there would be 2·5 lb. per square inch, if it rotated on its axis; but as it does not so rotate and is subjected to centrifugal force, the pressure of an atmosphere will vary according to the part of it over which it exists. On the nearest part of the side turned towards the earth, gravity, which we have just seen must be equal to 2·5 lb., would be acting in the same direction as centrifugal force, which in its turn is equal to 0·7 lb. or thereby, and the whole would be 3·2 lb. per square inch tending to drive off air and water to the far-off hemisphere. But from that place, gravity would gradually diminish its aid till it came to be nil at the disc separating the two hemispheres, where it would have no effect whatever as it would be acting In support of this suggestion we may refer to Professor C. A. Young's description, in his "Sun," p. 213, of one particular feature observed at the time of a total eclipse of the sun. He says:—"On such an occasion, if the sky is clear, There can be little doubt, we think, from what is said here, that Professor Young looks upon this "illumination of the edge of the disc" as pertaining to the moon, and upon the "radiant filaments, beams," etc. behind it as belonging to the sun. And in that case the illumination can only be caused by the light of the sun, refracted by the atmosphere belonging to the hemisphere of the moon that is never seen from the earth. We have taken it for granted in what we have been doing, that the moon has really rotated on its axis, and to some purpose, at some former period of its existence. Some people think otherwise, or that there is at least a doubt about it; we cannot see even the shadow of a doubt. All that we need to say in support of our opinion is, that there is no other conceivable way of accounting for its perfectly circular form. All the planets are circular, or spheroidal—to speak more correctly—in form, admittedly in consequence of rotation on their axes; and if one or two of Jupiter's satellites are not completely circular or spheroidal, it does not stretch our conscience very much to suppose that it is because they have not yet been rotated into form. Saturn apparently has satellites still in the form of rings, and there can be nothing out of the way in supposing that all of Jupiter's are not yet licked into shape. The fact that there is no appearance of compression on the moon makes us think of why there is none, and the only explanation that occurs to us is, that, as its rotation must have come to an end gradually, the compression it must have had when rotating must have disappeared gradually also, by reason of the differences of force in the equatorial How many things there are, in what is considered to be astronomical science, that have not been properly thought out to the end, and to what strange notions they have given rise! This one of the rotation of the moon which we have been discussing, has evidently given occasion for the conception of the theory that the absence of atmosphere and seas from the moon is the natural consequence of the kinetic theory of gases; and the author of the theory, and its supporters, have never, apparently, taken the trouble to think whether their absence from the near hemisphere is a satisfactory and convincing proof of there not being any air or water on the far-off one. In what we have proposed to write many similar examples of want of study will be met with, but we do not intend to call special attention to them, unless it be in cases where we consider it to be of some importance to do so. In fact we have already been working on that plan. |