Except for the typographical correction noted below and a few minor changes (missing/extra punctuation) which may have been made but not noted here, the text is the same as presented in the original publication. Some text has been rearranged to restore paragraphs that were split by tables or images. Most of the illustrations have notation to denote the scale compared to the original specimen (example: × 3). Due to the variation in monitor resolution and geometry, the scale is most likely not correct; but is provided as a guide. Page 187, Table 1 Item 5 : Intavenous => Intravenous double bar bar bar double bar bar bar The relationships of many groups of birds within the Order Passeriformes are poorly understood. Most ornithologists agree that some of the passerine families of current classifications are artificial groups. These artificial groupings are the result of early work which gave chief attention to readily adaptive external structures. The size and shape of the bill, for example, have been over-emphasized in the past as taxonomic characters. It is now recognized that the bill is a highly adaptive structure and that it frequently shows convergence and parallelism. Since studies of external morphology have failed in some cases to provide a clear understanding of the relationships of passerine birds, it seems appropriate that attention be given to other morphological features, to physiological features, and to life history studies in an attempt to find other clues to relationships at the family and subfamily levels. This paper reports the results of a study of the relationships of some birds of the Family Fringillidae and is based on the comparative myology of the pelvic appendage and on the comparative serology of saline-soluble proteins. Where necessary for comparative purposes, birds from other families have been included in these investigations. It has long been recognized that the Fringillidae include dissimilar groups. Recent work by Beecher (1951b, 1953) on the musculature of the jaw and by Tordoff (1954) primarily on the structure of the bony palate has emphasized the artificial nature of the assemblage although these authors disagree regarding major divisions within it (see below). The Fringillidae have been distinguished from other families of nine-primaried oscines by only one character—a heavy and conical bill (for crushing seeds). Bills of this form have been developed independently in several other, unrelated, groups; as Tordoff (1954:7) has pointed out, Molothrus of the Family Icteridae, Psittorostra of the Family Drepaniidae, and most members of the Family Ploceidae have bills as heavy and conical as those of the fringillids. The ploceids are distinguished from the fringillids by a single external character: a fairly well-developed tenth primary whereas in fringillids the tenth primary is absent or vestigial. Tordoff (1954:20) points out, however, that this distinction is of limited value since in other passerine families the tenth primary may be present in some species of a genus and absent in others. The Genus Vireo is an example. Furthermore, at least one ploceid (Philetairus) has a small, vestigial tenth primary, whereas some fringillids (Emberizoides, for example) possess a tenth primary which is rather large and ventrally placed (Chapin, 1917:253-254). Thus, it is obvious that studies based on other features are necessary in order to attain a better understanding of the relationships of the birds involved. Sushkin's studies (1924, 1925) of the structure of the bony and horny palates have served as a basis for the division of the Fringillidae into as many as five subfamilies (Hellmayr, 1938:v): Richmondeninae, Geospizinae, Fringillinae, Carduelinae, and Emberizinae. Beecher (1951b:280) points out that "the richmondenine finches arise so uninterruptedly out of the tanagers that ornithologists have had to draw the dividing line between the two groups arbitrarily." His study of pattern of jaw-musculature substantiates this. He states further that the cardueline finches arise without disjunction from the tanagers. He suggests, therefore, that the two groups of "tanager-finches" be made subfamilies of the Thraupidae and that a third subfamily be maintained for the more typical tanagers. He states that the emberizine finches are of different origin, arising from the wood warblers (1953:307). Beecher (1951a:431; 1953:309) includes the Dickcissel, Spiza americana, in the Family Icteridae, chiefly on the basis of jaw muscle-pattern and the horny palate. Tordoff (1954:10-11) presents evidence that the occurrence of palato-maxillary bones in nine-primaried birds indicates relationship among the forms possessing them. He points out that all fringillids except the Carduelinae possess palato-maxillaries that are either free or more or less fused to the prepalatine bar. He points out also that in all carduelines, the prepalatine bar is flared at its juncture with the premaxilla, and that the mediopalatine processes are fused across the midline; noncardueline fringillids lack these characteristics. In addition to the above he cites differences between the carduelines and the "other" fringillids in the appendicular skeletons, in geographic distribution, in patterns of migration, and in habits. Tordoff concludes, therefore, that the carduelines are not fringillids but ploceids, their closest affinities being with the ploceid Subfamily Estrildinae. On the basis of palatal structure, the Fringillinae and Geospizinae are combined with the Emberizinae, the name Fringillinae being maintained for the subfamily. The tanagers merge with the Richmondeninae on the one hand and with the Fringillinae on the other. On this basis, Tordoff (1954:32) suggests that the Family Fringillidae be divided into subfamilies as follows: Richmondeninae, Thraupinae, and Fringillinae. The carduelines are placed as the Subfamily Carduelinae in the Family Ploceidae. From the foregoing, it is apparent that the two most recent lines of research have given rise to conflicting theories regarding relationships within the Family Fringillidae. The purpose of my investigation, therefore, has been to gather information, from other fields, which might clarify the relationships of these birds. Since the muscle pattern of the leg in the Order Passeriformes is thought to be one of long standing and slow change, any variation which consistently distinguishes one group of species from another could be significant. With the hope that such variation might be found, a study of the comparative myology of the legs was undertaken. The usefulness of comparative serology as a means of determining relationship has been demonstrated in many investigations. Its use in this instance was undertaken for several reasons: comparative serology has its basis in biochemical systems which seem to evolve slowly; its methods are objective; and its use has, heretofore, resulted in the accumulation of data which seem compatible, in most instances, with data obtained from other sources. I acknowledge with pleasure the guidance received in this study from Prof. Harrison B. Tordoff of the University of Kansas. I am indebted also to Prof. Charles A. Leone without whose direction and assistance the serological investigations would not have been possible; to Professors E. Raymond Hall and A. Byron Leonard whose suggestions and criticisms have been most helpful in the preparation of this paper; and to T. D. Burleigh of the U. S. Fish and Wildlife Service for gifts of several specimens used in this work. Assistance with certain parts of the study were received from a contract (NR163014) between the Office of Naval Research of the United States Navy and the University of Kansas. In an excellent paper in which the muscles of the pelvic appendage of birds are carefully and accurately described, Hudson (1937) reviewed briefly the more important literature pertaining to the musculature of the leg which had been published to that date. A review of such information here, therefore, seems unnecessary. Myological formulae suggested by Garrod (1873, 1874) have been extensively used by taxonomists as aids in characterizing the orders of birds. Relatively few investigations, however, involving the comparative myology of the leg have been undertaken at family and subfamily levels. The works of Fisher (1946), Hudson (1948), and Berger (1952) are notable exceptions. The terminology for the muscles used in this paper follows that of Hudson (1937), except that I have followed Berger (1952) in Latinizing all names. Homologies are not given since these are reviewed by Hudson. Osteological terms are from Howard (1929). Specimens were preserved in a solution of one part formalin to eight parts of water. Thorough injection of all tissues was necessary for satisfactory preservation. Most of the down and contour feathers were removed to allow the preservative to reach the skin. In preparing specimens for study, the legs and pelvic girdle were removed and washed in running water for several hours to remove much of the formalin. They were then transferred to a mixture of 50 per cent alcohol and a small amount of glycerine. All specimens were dissected with the aid of a low power binocular microscope. Where possible, several specimens of each species were examined for individual differences. Such differences were found to be slight, involving mainly size and shape of the muscles. The size is dependent partly on the age of the bird, muscles from older birds being larger and better developed. The shape of a muscle (whether long and slender or short and thick) is due in part to the position in which the leg was preserved; that is to say, a muscle may be extended in one bird and contracted in another. For these reasons, descriptions and comparisons are based mainly on the origin and insertion of a muscle and on its position in relation to adjoining muscles. Birds dissected in this study are listed below (in the order of the A. O. U. Check-List):
The descriptions which follow are those of the muscles in the leg of the Red-eyed Towhee, Pipilo erythrophthalmus. Differences between species, where present, are noted for each muscle. The term thigh is used to refer to the proximal segment of the leg; the term crus is used for that segment of the leg immediately distal to the thigh. Musculus iliotrochantericus posticus (Fig. 2).—The origin of this muscle is fleshy from the entire concave lateral surface of the ilium anterior to the acetabulum. The fibers converge posteriorly, and the muscle inserts by a short, broad tendon on the lateral surface of the femur immediately distal to the trochanter. It is the largest muscle which passes from the ilium to the femur. Action.—Moves femur forward and rotates it anteriorly. Comparison.—No significant differences noted among the species studied. Musculus iliotrochantericus anticus (Fig. 3).—Covered laterally by the m. iliotrochantericus posticus, this slender muscle has a fleshy origin from the anteroventral edge of the ilium between the origins of the m. sartorius anteriorly and the m. iliotrochantericus medius posteriorly. The m. iliotrochantericus anticus is directed caudoventrally and inserts by a broad, flat tendon on the anterolateral surface of the femur between the heads of the m. femorotibialis externus and m. femorotibialis medius and just distal to the insertion of the m. iliotrochantericus medius. Action.—Moves femur forward and rotates it anteriorly. Comparison.—No significant differences noted among the species studied. Musculus iliotrochantericus medius (Fig. 3).—Smallest of the three iliotrochantericus muscles, this bandlike muscle has a fleshy origin from the ventral edge of the ilium just posterior to the origin of the m. iliotrochantericus anticus. The fibers are directed caudoventrally, and the insertion is tendinous on the anterolateral surface of the femur between the insertion of the other two iliotrochantericus muscles. Action.—Moves femur forward and rotates it anteriorly. Comparison.—No significant differences noted among the species studied. Musculus iliacus (Figs. 4, 5).—Arising from a fleshy origin on the ventral edge of the ilium just posterior to the origin of the m. iliotrochantericus medius, this small slender muscle passes posteroventrally to its fleshy insertion on the posteromedial surface of the femur just proximal to the origin of the m. femorotibialis internus. Action.—Moves femur forward and rotates it posteriorly. Comparison.—No significant differences among the species studied. Musculus sartorius (Figs. 1, 4).—A long, straplike muscle, the sartorius forms the anterior edge of the thigh. The origin is fleshy, half from the anterior edge of the ilium and from the median dorsal ridge of this bone and half from the posterior one or two free dorsal vertebrae. The insertion is fleshy along a narrow line on the anteromedial edge of the head of the tibia and on the medial region of the patellar tendon. Action.—Moves thigh forward and upward and extends shank. Comparison.—In Loxia and Spinus, only one-third of the origin is from the last free dorsal vertebra. In Hesperiphona, Carpodacus, Pinicola, and Leucosticte, only one-fifth of the origin is from this vertebra. Musculus iliotibialis (Fig. 1).—Broad and triangular, this muscle covers most of the deeper muscles of the lateral aspect of the thigh. The middle region is fused with the underlying femorotibialis muscles. In the distal half of this muscle there are three distinct parts; the anterior and posterior edges are fleshy and the central part is aponeurotic. The origin is from a narrow line along the iliac crests—from the origin of the m. sartorius, anteriorly, to the origin of the m. semitendinosus posteriorly. The origin is aponeurotic in the preacetabular region but fleshy in the postacetabular region. The distal part of the muscle is aponeurotic and joins with the femorotibialis muscles in the formation of the patellar tendon. This tendon incloses the patella and inserts on a line along the proximal edges of the cnemial crests of the tibiotarsus. Action.—Extends crus. Comparison.—In Vireo the central aponeurotic portion of this muscle is absent. Musculus femorotibialis externus (Fig. 2).—Covering the lateral and anterolateral surfaces of the femur, this large muscle has a fleshy origin from the lateral edge of the proximal three-fourths of the femur. The origin separates the insertion of the m. iliotrochantericus anticus from that of the m. ischiofemoralis and, in turn, is separated from the origin of the m. femorotibialis medius by the insertions of the m. iliotrochantericus anticus and m. iliotrochantericus medius. Approximately midway of the length of the femur this muscle fuses anteromesially with the m. femorotibialis medius. Distally, the m. femorotibialis externus contributes to the formation of the patellar tendon which inserts on a line along the proximal edges of the cnemial crests of the tibiotarsus. Action.—Extends crus. Comparison.—No significant differences noted among the species studied. Musculus femorotibialis medius (Figs. 2, 4).—The origin of this muscle, which lies along the anterior edge of the femur, is fleshy from the entire length of the femur proximal to the level of attachment of the proximal arm of the biceps loop. Laterally this muscle is completely fused for most of its length with the m. femorotibialis externus and contributes to the formation of the patellar tendon, which inserts on a line along the proximal edges of the cnemial crests of the tibiotarsus. Many of the fibers, nevertheless, insert on the proximal edge of the patella. Action.—Extends crus. Comparison.—No significant differences noted among the species studied. Musculus femorotibialis internus (Fig. 4).—One of the most superficial muscles lying on the medial surface of the thigh, this muscle is divided, especially near the distal end, into two parts, lateral and medial. The origin of the lateral part is fleshy from a line on the medial surface of the femur; the origin begins proximally at a point near the insertion of the m. iliacus. The medial, bulkier part of the muscle has a fleshy origin on the medial surface of the lower one-third of the femur. The two parts fuse to some extent above the points of insertion and insert on the medial edge of the head of the tibia. Action.—Rotates tibia anteriorly. Comparison.—Two parts of this muscle variously fused; otherwise, no significant differences in the species studied. Musculus piriformis (Fig. 3).—This muscle is represented by the pars caudifemoralis only, the pars iliofemoralis being absent in passerine birds as far as is known. The pars caudifemoralis is flat, somewhat spindle-shaped, and passes anteroventrally from the pygostyle to the femur. The origin is tendinous from the anteroventral edge of the pygostyle, and the insertion is semitendinous on the posterolateral surface of the shaft of the femur about one-fourth its length from the proximal end. Action.—Moves femur posteriorly and rotates it in this direction; moves tail laterally and depresses it. Comparison.—No significant differences noted among the species studied. Musculus semitendinosus (Figs. 2, 3, 5).—The origin from the extreme posterior edge of the posterior iliac crest of the ilium is fleshy and is aponeurotic from the last vertebra of the synsacrum and the transverse processes of several caudal vertebrae. The straplike belly passes along the posterolateral margin of the thigh. Immediately posterior to the knee, the muscle is divided transversely by a ligament. That portion passing anteriorly from the ligament is the m. accessorius semitendinosi (here considered a part of the m. semitendinosus) and is discussed below. The ligament continues distally in two parts; one part inserts on the medial surface of the pars media of the m. gastrocnemius and the other part fuses with the tendon of insertion of the m. semimembranosus. The m. accessorius semitendinosi extends anteriorly from the above mentioned ligament to a fleshy insertion on the posterolateral surface of the femur immediately proximal to the condyles. Action.—Moves femur posteriorly, flexes the crus and aids in extending the tarsometatarsus. Comparison.—No significant differences noted among the species studied. Musculus semimembranosus (Figs. 3, 4, 5).—This straplike muscle passes along the posteromedial surface of the thigh. The origin is semitendinous along a line on the ischium, from a point dorsal to the middle of the ischiopubic fenestra to the posterior end of the ischium, and from a small area of the abdominal musculature posterior to the ischium. The insertion is by means of a broad, thin tendon on a ridge on the medial surface of the tibia immediately distal to the head of this bone. The tendon of insertion passes between the head of the pars media and pars interna of the m. gastrocnemius and is fused with the tendon of the m. semitendinosus. Action.—Flexes crus. Comparison.—No significant differences noted among the species studied. Musculus biceps femoris (Fig. 2).—Long, thin, and somewhat triangular, this muscle lies on the lateral side of the thigh just underneath the m. iliotibialis. Its origin is from a line along the anterior and posterior iliac crests underneath the origin of the m. iliotibialis. Anterior to the acetabulum the origin is aponeurotic, and the edge of this aponeurosis passes over the proximal end of the femur. The origin posterior to the acetabulum is fleshy. The most anterior point of origin is difficult to ascertain but it lies near the center of the anterior iliac crest. The most posterior point of origin is immediately dorsal to the posterior end of the ilioischiatic fenestra. Behind the knee the fibers of this muscle converge to form the strong tendon of insertion which passes through the biceps loop, under the tendon of origin of the m. flexor perforatus digiti II, and inserts on a small tubercle on the posterolateral edge of the fibula at the point of the tibia-fibula fusion. The biceps loop is tendinous and the distal end attaches to a protuberance on the posterolateral edge of the femur at the proximal edge of the external condyle. The proximal end attaches to the anterolateral edge of the femur immediately proximal to the distal end of the loop, which extends posterior to the femur. The distal arm of this loop is connected with the tendon of origin of the m. flexor perforatus digiti II by a strong tendon. Action.—Flexes crus. Comparison.—No significant differences noted among the species studied. Musculus ischiofemoralis (Fig. 3).—Short and thick, this muscle arises directly from the lateral surface of the ischium between the posterior iliac crest and the ischiopubic fenestra. The area of origin extends to the posterior edge of the ischium. The insertion is tendinous on the lateral surface of the trochanter opposite the insertion of the m. iliotrochantericus medius. Action.—Moves femur posteriorly and rotates it in this direction. Comparison.—No significant differences noted among the species studied. Musculus obturator internus (Figs. 4, 7).—Lying on the inside of the pelvis and covering the medial surface of the ischiopubic fenestra, is this flat, pinnate, leaf-shaped muscle. The origin is fleshy and is from the ischium and pubis around the edges of this fenestra; none of the fibers arises from the membrane stretched across the fenestra. Anteriorly the fibers converge and form a strong tendon that passes through the obturator foramen and inserts on the posterolateral surface of the trochanter of the femur. Action.—Rotates femur posteriorly. Comparison.—No significant differences noted among the species studied. Musculus obturator externus (Fig. 7).—Short and fleshy, this muscle consists of two parts which are not easily separable but which may be traced throughout its length. The parts are more nearly distinct at the origin. The dorsal part arises directly from the ischium along the dorsal edge of the obturator foramen. The larger ventral part arises directly from the anterior and ventral edges of the obturator foramen. The fibers of the dorsal part pass anteriorly, cover the tendon of the m. obturator internus laterally, and insert on the trochanter around the point of insertion of the latter muscle. The fibers of the ventral part pass parallel with the tendon of the m. obturator internus and insert on the trochanter immediately distal and posterior to the tendon of the latter muscle. Action.—Rotates femur posteriorly. Comparison.—In Passer, Estrilda, Poephila, Hesperiphona, Carpodacus, Pinicola, Leucosticte, Spinus and Loxia, this muscle is undivided and, in its position, origin, and insertion, resembles the ventral part of the bipartite muscle described above. The origin is from the anterior and ventral edges of the obturator foramen and the insertion is on the trochanter of the femur immediately distal and posterior to the insertion of the m. obturator internus. In all other genera examined, the muscle is bipartite. In Chlorura the dorsal part is larger and better developed than it is in the other genera. Musculus adductor longus et brevis (Figs. 3, 4, 5).—Consisting of two distinct, straplike parts, this large muscle lies on the medial surface of the thigh, posterior to the femur. The pars anticus has a semitendinous origin on a line that extends posteriorly from the posteroventral edge of the obturator foramen to a point half way across the membrane that covers the ischiopubic fenestra. The insertion is fleshy along the posterior surface of the femur from the level of the insertion of the m. piriformis distally to the medial surface of the internal condyle. The pars posticus originates by a broad, flat tendon on a line across the posterior half of the membrane that covers the ischiopubic fenestra. The insertion is at the point of origin of the pars media of the m. gastrocnemius on the posteromedial surface of the proximal end of the internal condyle of the femur. There is a broad tendinous connection with the proximal end of the pars media of the m. gastrocnemius. The anterior edge of the pars posticus is overlapped medially by the posterior edge of the pars anticus. Action.—Flexes thigh; may flex crus also and may extend tarsometatarsus. Comparison.—In Vireo olivaceous, the origin of this muscle does not extend the length of the ischiopubic fenestra. The origin, furthermore, is along the dorsal edge of the ischiopubic fenestra and not from the membrane covering the fenestra. Finally, in this species, the origin of the pars posticus is fleshy. Musculus tibialis anticus (Figs. 2, 5).—Lying along the anterior edge of the crus, a part of this muscle is covered by the m. peroneus longus. The origin is by two distinct heads, each of which is pinnate. The anterior head arises directly from the edges of the outer and inner cnemial crests. The posterior head arises by a short, strong tendon from a small pit on the anterodistal edge of the external condyle of the femur. This tendon and the proximal end of the muscle pass between the head of the fibula and the outer cnemial crest. The two heads of the muscle fuse at a place slightly more than one-half of the distance down the crus. At the distal end of the crus this muscle gives rise to a strong tendon which passes under a fibrous loop immediately proximal to the external condyle in company with the m. extensor digitorum longus and which passes between the condyles of the tibia and inserts on a tubercle on the anteromedial edge of the proximal end of the tarsometatarsus. Action.—Flexes tarsometatarsus. Comparison.—No significant differences noted among the species studied. Musculus extensor digitorum longus (Figs. 3, 5, 8).—Slender and pinnate, this muscle lies along the anteromedial surface of the tibia. The origin is fleshy from most of the region between the cnemial crests and from a line along the anterior surface of the proximal fourth of the tibia. Approximately two-thirds of the distance down the crus the muscle gives rise to the tendon of insertion which passes through the fibrous loop near the distal end of the tibia in company with the m. tibialis anticus. The tendon then passes along beneath the supratendinal bridge at the distal end of the tibia, traverses the anterior intercondylar fossa, and passes beneath a bony bridge on the anteromedial surface of the proximal end of the tarsometatarsus. The tendon continues along the anterior surface of the tarsometatarsus to a point immediately above the bases of the toes and there gives rise to three branches, one to the anterior surface of each foretoe. The insertions of each branch are on the anterior surfaces of the phalanges as shown in Fig. 8. Action.—Extends foretoes. Comparison.—This muscle is weakly developed in Leucosticte and Calvarius; the belly is slender and extends only half way down the crus before giving rise to the tendon of insertion. The functional significance of this variation is difficult to understand. The convergence in muscle pattern shown by these two genera, however, is in all probability the result of similarities in behavior patterns. These birds perch less frequently than do the other birds studied. Thus, the toes are neither flexed nor extended as often; the smaller size of the m. extensor digitorum longus may have resulted in part from this lessened activity. Except for the variations just noted, there are no significant differences among the species studied; even the rather complex patterns of insertion are identical. Musculus peroneus longus (Fig. 1).—Relatively thin and straplike, this muscle lies on the anterolateral surface of the crus and is intimately attached to the underlying muscles. The part of the origin from the proximal edges of the inner and outer cnemial crests is semitendinous but the part of the origin from the lateral edge of the shaft of the fibula is tendinous. Approximately two-thirds the distance down the crus the muscle gives rise to the tendon of insertion. Immediately above the external condyle of the tibiotarsus this tendon divides. The posterior branch inserts on the proximal end of the lateral edge of the tibial cartilage. The anterior branch passes over the lateral surface of the external condyle to the posterior surface of the tarsometatarsus and there unites with the tendon of the m. flexor perforatus digiti III. Action.—Extends tarsometatarsus and flexes third digit. Comparison.—No significant differences noted among the species studied. Musculus peroneus brevis (Figs. 2, 3).—Lying along the anterolateral surface of the tibia, this slender, pinnate muscle arises from a fleshy origin along this surface and along the anterior surface of the fibula from a point immediately proximal to the insertion of the m. biceps femoris to a point approximately two-thirds of the way down the crus. Near the distal end of the tibia the muscle gives rise to the tendon of insertion that passes through a groove on the anterolateral edge of the tibia just above the external condyle. Here the tendon is held in place by a broad fibrous loop and passes under the anterior branch of the tendon of insertion of the m. peroneus longus and inserts on a prominence on the lateral edge of the proximal end of the tarsometatarsus. Action.—Extends tarsometatarsus and may abduct it slightly. Comparison.—No significant differences noted among the species studied. Musculus gastrocnemius (Figs. 1, 4).—The largest muscle of the pelvic appendage, it covers superficially all of the posterior surface, most of the medial surface, and half of the lateral surface of the crus. The muscle originates by three distinct heads. The pars externa covers the posterolateral surface of the crus, is intermediate in size between the other two heads, and arises by a short, strong tendon from a small bony protuberance on the posterolateral side of the distal end of the femur immediately proximal to the fibular condyle. The tendon is intimately connected with the distal arm of the loop for the m. biceps femoris. The pars media is the smallest of the three heads and lies on the medial surface of the crus. The head of the pars media is separated from the pars interna by the tendon of insertion of the m. semimembranosus and originates by a short, strong tendon from the posteromedial surface of the proximal end of the internal condyle of the femur. The proximal portion of the pars media has tendinous connections with the tendon of the m. semitendinosus and with the pars posticus of the m. adductor longus et brevis. The pars interna is the largest of the three heads and covers most of the medial surface of the crus. This head in its proximal portion is distinctly divided into anterior and posterior parts, the former overlapping the latter medially. The origin of the posterior part is fleshy from the anterior half of the tibial head. Some of the fibers of the anterior part arise directly from the inner cnemial crest while its remaining fibers arise from the patellar tendon (Fig. 1) and form a band that extends around the anterior surface of the knee, covering the insertion of the m. sartorius. Approximately half way down the crus, the three heads give rise to the tendon of insertion, the tendo achillis, which passes over and is tightly bound to the posterior surface of the tibial cartilage. The insertion is tendinous on the posterior surface of the hypotarsus and along the posterolateral ridge of the tarsometatarsus. This tendon seems to be continuous with a fascia which forms a sheath around the posterior surface of the tarsometatarsus holding the other tendons of this region firmly in the posterior sulcus. Action.—Extends tarsometatarsus. Comparison.—Study of the pars externa and pars media reveals no significant differences among the species dissected. The pars interna, however, is subject to some variation which is described below. |