DIRECT EQUILIBRATION.
§ 159. Every change is towards a balance of forces; and of necessity can never cease until a balance of forces is reached. When treating of equilibration under its general aspects (First Principles, Part II., Chap. xxii.), we saw that every aggregate having compound movements tends continually towards a moving equilibrium; since any unequilibrated force to which such an aggregate is subject, if not of a kind to overthrow it altogether, must continue modifying its state until an equilibrium is brought about. And we saw that the structure simultaneously reached must be "one presenting an arrangement of forces that counterbalance all the forces to which the aggregate is subject;" since, "so long as there remains a residual force in any direction—be it excess of a force exercised by an aggregate on its environment, or of a force exercised by its environment on the aggregate, equilibrium does not exist; and therefore the re-distribution of matter must continue."
It is essential that this truth should here be fully comprehended; and to the end of insuring clear comprehension of it, some re-illustration is desirable. The case of the Solar System will best serve our purpose. An assemblage of bodies, each of which has its simple and compound motions that severally alternate between two extremes, and the whole of which has its involved perturbations, that now increase and now decrease, is here presented to us. Suppose a new factor were brought to bear on this moving equilibrium—say by the arrival of some wandering mass, or by an additional momentum given to one of the existing masses—what would be the result? If the strange body or the extra energy were very large, it might so derange the entire system as to cause its collapse. But what if the incident energy, falling on the system from without, proved insufficient to overthrow it? There would then arise a set of perturbations which would, in the course of an enormous period, slowly work round into a modified moving equilibrium. The effects primarily impressed on the adjacent masses, and in a smaller degree on the remoter masses, would presently become complicated with the secondary effects impressed by the disturbed masses on one another; and these again with tertiary effects. Waves of perturbation would continue to be propagated throughout the entire system; until, around a new centre of gravity, there had been established a set of planetary motions different from the preceding ones. The new energy must gradually be used up in overcoming the energies resisting the divergence it generates; which antagonizing energies, when no longer opposed, set up a counter-action, ending in a compensating divergence in the opposite direction, followed by a re-compensating divergence, and so on. Now though instead of being, like the Solar System, in a state of independent moving equilibrium, an organism is in a state of dependent moving equilibrium (First Principles, §170); yet this does not prevent the manifestation of the same law. Every animal daily obtains from without, a supply of energy to replace the energy it expends; but this continual giving to its parts a new momentum, to make up for the momentum continually lost, does not interfere with the carrying on of actions and reactions like those just described. Here, as before, we have a definitely-arranged aggregate of parts, called organs, having their definitely-established actions and reactions, called functions. These rhythmical actions or functions, and the various compound rhythms resulting from their combinations, are so adjusted as to balance the actions to which the organism is subject: there is a constant or periodic genesis of energies which, in their kinds, amounts, and directions, suffice to antagonize the energies the organism has constantly or periodically to bear. If, then, there exists this moving equilibrium among a set of internal actions, exposed to a set of external actions, what must result if any of the external actions are changed? Of course there is no longer an equilibrium. Some energy which the organism habitually generates, is too great or too small to balance some incident energy; and there arises a residual energy exerted by the environment on the organism, or by the organism on the environment. This residual or unbalanced energy, of necessity expends itself in producing some change of state in the organism. Acting directly on some organ and modifying its function, it indirectly modifies dependent functions and remotely influences all the functions. As we have already seen (§§68, 69), if this new energy is permanent, its effects must be gradually diffused throughout the entire system; until it has come to be equilibrated in producing those structural rearrangements whence result a counter-balancing energy.
The bearing of this general truth on the question we are now dealing with is obvious. Those modifications upon modifications, which the unceasing mutations of their environments have been all along generating in organisms, have been in each case modifications involved by the establishment of a new balance with the new combination of actions. In every species throughout all geologic time, there has been perpetually going on a rectification of the equilibrium, which has been perpetually disturbed by the alteration of its circumstances; and every further heterogeneity has been the addition of a structural change entailed by a new equilibration, to the structural changes entailed by previous equilibrations. There can be no other ultimate interpretation of the matter, since change can have no other goal.
This equilibration between the functions of an organism and the actions in its environment, may be either direct or indirect. The new incident force may either immediately call forth some counteracting force, and its concomitant structural change; or it may be eventually balanced by some otherwise-produced change of function and structure. These two processes of equilibration are quite distinct, and must be separately dealt with. We will devote this chapter to the first of them.
§ 160. Direct equilibration is that process currently known as adaptation. We have already seen (Part II., Chap, v.), that individual organisms become modified when placed in new conditions of life—so modified as to re-adjust the powers to the requirements; and though there is great difficulty in disentangling the evidence, we found reason for thinking (§82) that structural changes thus caused by functional changes are inherited. In the last chapter, it was argued that if, instead of the succession of individuals constituting a species, there were a continuously-existing individual, any functional and structural divergence produced by a new incident action, would increase until the new incident action was counterpoised; and that the replacing of a continuously-existing individual by a succession of individuals, each formed out of the modified substance of its predecessor, will not prevent the like effect from being produced. Here we further find that this limit towards which any such organic change advances, in the species as in the individual, is a new moving equilibrium adjusted to the new arrangement of external forces.
But now what are the conditions under which alone, direct equilibration can occur? Are all the modifications that serve to re-fit organisms to their environments, directly adaptive modifications? And if otherwise, which are the directly adaptive and which are not? How are we to distinguish between them?
There can be no direct equilibration with an external agency which, if it acts at all, acts fatally; since the organism to be adapted disappears. Conversely, some inaccessible benefit which a small modification in the organism would make accessible, cannot by its action tend to produce this modification: the modification and the benefit do not stand in dynamic relation. The only new incident forces which can work the changes of function and structure required to bring any animal or plant into equilibrium with them, are such incident forces as operate on this animal or plant, either continuously or frequently. They must be capable of appreciably changing that set of complex rhythmical actions and reactions constituting the life of the organism; and yet must not usually produce perturbations that are fatal. Let us see what are the limits to direct equilibration hence arising.
§ 161. In plants, organs engaged in nutrition, and exposed to variations in the amounts and proportions of matters and forces utilized in nutrition, may be expected to undergo corresponding variations. We find evidence that they do this. The "changes of habit" which are common in plants, when taken to places unlike in climate or soil to those before inhabited by them, are changes of parts in which the modified external actions directly produce modified internal actions. The characters of the stem and shoots as woody or succulent, erect or procumbent; of the leaves in respect of their sizes, thicknesses, and textures; of the roots in their degrees of development and modes of growth; are obviously in immediate relation to the characters of the environment. A permanent difference in the quantity of light or heat affects, day after day, the processes going on in the leaves. Habitual rain or drought alters all the assimilative actions, and appreciably influences the organs that carry them on. Some particular substance, by its presence in the soil, gives new qualities to some of the tissues; causing greater rigidity or flexibility, and so affecting the general aspect. Here then we have changes towards modified sets of functions and structures, in equilibrium with modified sets of external forces.
But now let us turn to other classes of organs possessed by plants—organs which are not at once affected in their actions by variations of incident forces. Take first the organs of defence. Many plants are shielded against animals that would else devour them, by formidable thorns; and others, like the nettle, by stinging hairs. These must be counted among the appliances by which equilibrium is maintained between the actions in the organism and the actions in its environment; seeing that were these defences absent, the destruction by herbivorous animals would be so much increased, that the number of young plants annually produced would not suffice, as it now does, to balance the mortality, and the species would disappear. But these defensive appliances, though they aid in maintaining the balance between inner and outer actions, cannot have been directly called forth by the outer actions which they serve to neutralize; for these outer actions do not continuously affect the functions of the plant even in a general way, still less in the special way required. Suppose a species of nettle bare of poison-hairs, to be habitually eaten by some mammal intruding on its habitat. The actions of this mammal would have no direct tendency to develop poison-hairs in the plant; since the individuals devoured could not bequeath changes of structure, even were the actions of a kind to produce fit ones; and since the individuals which perpetuated themselves would be those on which the new incident force had not fallen. Organs of another class, similarly circumstanced, are those of reproduction. Like the organs of defence these are not, during the life of the individual plant, variably exercised by variable external actions; and therefore do not fulfil those conditions under which structural changes may be directly caused by changes in the environment. The generative apparatus contained in every flower acts only once during its existence; and even then, the parts subserve their ends in a passive rather than an active way. Functionally-produced modifications are therefore out of the question. If a plant's anthers are so placed that the insect which most commonly frequents its flowers, must come in contact with the pollen, and fertilize with it other flowers of the same species; and if this insect, dwindling away or disappearing from the locality, leaves behind no insects having such shapes and habits as cause them to do the same thing efficiently, but only some which do it inefficiently; it is clear that this change of its conditions has no immediate tendency to work in the plant any such structural change as shall bring about a new balance with its conditions. For the anthers, which, even when they discharge their functions, do it simply by standing in the way of the insect, are, under the supposed circumstances, left untouched by the insect; and this remaining untouched cannot have the effect of so modifying the stamens as to bring the anthers into a position to be touched by some other insect. Only those individuals whose parts of fructification so far differed from the average form that some other insect could serve them as pollen-carrier, would have good chances of perpetuating themselves. And on their progeny, inheriting the deviation, there would act no external force directly tending to make the deviation greater; since the new circumstances to which re-adaptation is required, are such as do not in the least alter the equilibrium of functions constituting the life of the individual plant.
§ 162. Among animals, adaptation by direct equilibration is similarly traceable wherever, during the life of the individual, an external change generates some constant or repeated change of function. This is conspicuously the case with such parts of an animal as are immediately exposed to diffused influences, like those of climate, and with such parts of an animal as are occupied in its mechanical actions on the environment. Of the one class of cases, the darkening of the skin which follows exposure to one or other extreme of temperature, may be taken as an instance; and with the other class of cases we are made familiar by the increase and decrease which use and disuse cause in the organs of motion. It is needless here to exemplify these: they were treated of in the Second Part of this work.
But in animals, as in plants, there are many indispensable offices fulfilled by parts between which and the external conditions they respond to, there is no such action and reaction as can directly produce an equilibrium. This is especially manifest with dermal appendages. Some ground exists for the conclusion that the greater or less development of hairs, is in part immediately due to increase or decrease of demand on the passive function, as forming a non-conducting coat; but be this as it may, it is impossible that there can exist any such cause for those immense developments of hairs which we see in the quills of the porcupine, or those complex developments of them known as feathers. Such an enamelled armour as is worn by Lepidosteus, is inexplicable as a direct result of any functionally-worked change. For purposes of defence, such an armour is as needful, or more needful, for hosts of other fishes; and did it result from any direct reaction of the organism against any offensive actions it was subject to, there seems no reason why other fishes should not have developed similar protective coverings. Of sundry reproductive appliances the like may be said. The secretion of an egg-shell round the substance of an egg, in the oviduct of a bird, is quite inexplicable as a consequence of some functionally-wrought modification of structure, immediately caused by some modification of external conditions. The end fulfilled by the egg-shell, is that of protecting the contained mass against certain slight pressures and collisions, to which it is liable during incubation. How, by any process of direct equilibration, could it come to have the required thickness? or, indeed, how could it come to exist at all? Suppose this protective envelope to be too weak, so that some of the eggs a bird lays are broken or cracked. In the first place, the breakages or crackings are actions which cannot react on the maternal organism in such ways as to cause the secretion of thicker shells for the future: to suppose that they can, is to suppose that the bird understands the cause of the evil, and that the secretion of thicker shells can be effected by its will. In the second place, such developing chicks as are contained in the shells which crack or break, are almost certain to die; and cannot, therefore, acquire appropriately-modified constitutions: even supposing any relation could exist between the impression received and the change required. Meanwhile, such eggs as escape breakage are not influenced at all by the requirement; and hence, on the birds developed from them, there cannot have acted any force tending to work the needful adjustment of functions. In no way, therefore, can a direct equilibration between constitution and conditions be here produced. Even in organs that can be modified by certain incident actions into correspondence with such incident actions, there are some re-adjustments which cannot be effected by direct balancing. It is thus with the bones. The majority of the bones have to resist muscular strains; and variations in the muscular strains call forth, by reaction, variations in the strengths of the bones. Here there is direct equilibration. But though the greater massiveness acquired by bones subject to greater strains, may be ascribed to counter-acting forces evoked by forces brought into action; it is impossible that the acquirement of greater lengths by bones can be thus accounted for. It has been supposed that the elongation of the metatarsals in wading birds, has resulted from direct adaptation to conditions of life. To justify this supposition, however, it must be shown that the mechanical actions and reactions in the legs of a wading bird, differ from those in the legs of other birds; and that the differential actions are equilibrated by the extra lengths. There is not the slightest evidence of this. The metatarsals of a bird have to bear no appreciable strains but those due to the superincumbent weight. Standing in the water does not appreciably alter such strains; and even if it did, an increase in the lengths of these bones would not fit them any better to meet the altered strains.
§ 163. The conclusion at which we arrive is, then, that there go on in all organisms, certain changes of function and structure that are directly consequent on changes in the incident forces—inner changes by which the outer changes are balanced, and the equilibrium restored. Such re-equilibrations, which are often conspicuously exhibited in individuals, we have reason to believe continue in successive generations; until they are completed by the arrival at structures fitted to the modified conditions. But, at the same time, we see that the modified conditions to which organisms may be adapted by direct equilibration, are conditions of certain classes only. That a new external action may be met by a new internal action, it is needful that it shall either continuously or frequently be borne by the individuals of the species, without killing or seriously injuring them; and shall act in such way as to affect their functions. And we find that many of the environing agencies—evil or good—to which organisms have to be adjusted, are not of these kinds: being agencies which either do not immediately affect the functions at all, or else affect them in ways that prove fatal.
Hence there must be at work some other process which equilibrates the actions of organisms with the actions they are exposed to. Plants and animals that continue to exist, are necessarily plants and animals whose powers balance the powers acting on them; and as their environments change, the changes which plants and animals undergo must necessarily be changes towards re-establishment of the balance. Besides direct equilibration, there must therefore be an indirect equilibration. How this goes on we have now to inquire.