CELL-LIFE AND CELL-MULTIPLICATION. § 74a A concomitant truth, or the same truth under another aspect, is that Nature everywhere presents us with complexities within complexities, which go on revealing themselves as we investigate smaller and smaller objects. In a preceding chapter (§§54a, 54b) it was pointed out that each primitive organism, in common with each of the units out of which the higher and larger organisms are built, was found a generation ago to consist of nucleus, protoplasm, and cell-wall. This general conception of a cell remained for a time the outcome of inquiry; but with the advance of microscopy it In the passages just referred to it was said that the external layer or cell-wall is a non-essential, inanimate part produced by the animate contents. Itself a product of protoplasmic action, it takes no part in protoplasmic changes, and may therefore here be ignored. § 74b What these granules or microsomes are—whether, as some have contended, they are the essential living elements of the protoplasm, or whether, as is otherwise held, they are nutritive particles, is at present undecided. But the fact, alleged Concerning the protoplasm contained in each cell, named by some cytoplasm, it remains to say that it always includes a small body called the centrosome, which appears to have a directive function. Usually the centrosome lies outside the nucleus, but is alleged to be sometimes within it. During what is called the "resting stage," or what might more properly be called the growing stage (for clearly the occasional divisions imply that in the intervals between them there has been increase) the centrosome remains quiescent, save in the respect that it exercises some coercive influence on the protoplasm around. This results in the radially-arranged lines constituting an "aster." What is the nature of the coercion exercised by the centrosome—a body hardly distinguishable Respecting this small body we have further to note that, like the cell as a whole, it multiplies by fission, and that the bisection of it terminates the resting or growing stage and initiates those complicated processes by which two cells are produced out of one: the first step following the fission being the movement of the halves, with their respective completed asters, to the opposite sides of the nucleus. § 74c In the first place, beyond the cases in which the nucleus, though ordinarily invisible, is said to have been rendered visible by a re-agent, there are cases, as in the already-named Archerina, where no re-agent makes one visible. In the second place, there is the admitted fact that some nuclei are diffused; as in Trachelocerca and some other Infusoria. In them the numerous scattered granules are supposed to constitute a nucleus: an interpretation obviously biassed by the desire to save the generalization. In the third place, the nucleus is frequently multiple in cells of low types; as in some families of AlgÆ and predominantly among Fungi. The facts as thus grouped suggest that the nucleus has arisen in conformity with the law of evolution—that the primitive protoplast, though not homogeneous in the full sense, was homogeneous in the sense of being a uniformly granular protoplasm; and that the protoplasts with diffused nuclei, together with those which are multi-nucleate, and those which have nuclei of a branching form, represent stages in that process by which the relatively homogeneous protoplast passed into the relatively heterogeneous one now almost universal. Concerning the structure and composition of the developed nucleus, the primary fact to be named is that, like the surrounding granular cytoplasm, it is formed of two distinct elements. It has a groundwork or matrix not differing much from that of the cytoplasm, and at some periods continuous with it; and immersed in this it has a special matter named chromatin, distinguished from its matrix by becoming dyed more or less deeply when exposed to fit re-agents. During the "resting stage," or period of growth and activity which comes between periods of division, the chromatin is dispersed throughout the ground-substance, either in discrete portions or in such way as to form an irregular network or sponge-work, various in appearance. When the time for fission is approaching this dispersed chromatin begins to gather itself together: reaching its eventual concentration through several stages. By its concentration are produced the chromosomes, constant in number in each species of plant or animal. It is alleged that the substance of the chromosomes is not continuous, but consists of separate elements or granules, which have been named chromomeres; and it is also alleged that, whether in the dispersed or integrated form, each chromosome retains its individuality—that the chromomeres composing it, now spreading out into a network and now uniting into a worm-like body, form a group which never During this process of mitosis or karyokinesis, the dispersed chromatin having passed through the coil-stage, reaches presently the star-stage, in which the chromosomes are arranged symmetrically about the equatorial plane of the nucleus. Meanwhile in each of them there has been a preparation for splitting longitudinally in such way that the halves when separated contain (or are assumed to contain) equal numbers of the granules or chromomeres, which some think are the ultimate morphological units of the chromosomes. A simultaneous change has occurred: there has been in course of formation a structure known as the amphiaster. The two centrosomes which, as before said, place themselves on opposite sides of the nucleus, become the terminal poles of a spindle-shaped arrangement of fibres, arising mainly from the groundwork of the nucleus, now continuous with the groundwork of the cytoplasm. A conception of this structure may be formed by supposing that the radiating fibres of the respective asters, meeting one another and uniting in the intermediate space, thereafter exercise a tractive force; since it is clear that, while the central fibres of the bundle will form straight lines, the outer ones, pulling against one another not in straight lines, will form curved lines, becoming more pronounced in their curvatures as the distance from the axis increases. That a tractive force is at work seems inferable from the results. For the separated halves of the split chromosomes, which now form clusters on the two sides of the equatorial plane, gradually part company, and are apparently drawn as clusters towards the opposing centrosomes. As this change progresses the original nucleus loses its individuality. The new chromosomes, halves of the previous chromosomes, concentrate to found Many parts of this complex process are still imperfectly understood, and various opinions concerning them are current. But the essential facts are that this peculiar substance, the chromatin, at other times existing dispersed, is, when division is approaching, gathered together and dealt with in such manner as apparently to insure equal quantities being bequeathed by the mother-cell to the two daughter-cells. § 74d The theory espoused by some, that the nucleus is the regulative organ of the cell, is met by difficulties. One of them is that, as pointed out in the chapter on "Structure," the nucleus, though morphologically central, is not central geometrically considered; and that its position, often near to some parts of the periphery and remote from others, almost of itself negatives the conclusion that its function is directive in the ordinary sense of the word. It could not well control the cytoplasm in the same ways in all directions and at different distances. A further difficulty is that the cytoplasm when deprived of its nucleus can perform for some time various of its actions, though it eventually dies without reproducing itself. For the hypothesis that the nucleus is a vehicle for transmitting hereditary characters, the evidence seems strong. When it was shown that the head of a spermatozoon is simply a detached nucleus, and that its fusion with the In presence of these two suggested hypotheses and these respective difficulties, may we not suspect that the action of the chromatin is one which in a way fulfils both functions? Let us consider what action may do this. § 74e What, now, are the implications? Molecular agitation results from decomposition of each phosphorized molecule: shocks are continually propagated around. From the chromatin, units of which are thus ever falling into stabler states, there are ever being diffused waves of molecular motion, setting up molecular changes in the cytoplasm. The chromatin stands towards the other contents of the cell in the same relation that a nerve-element stands to any element of Several confirmatory facts may be named. During the intervals between cell-fissions, when growth and the usual cell-activities are being carried on, the chromatin is dispersed throughout the nucleus into an irregular network: thus greatly increasing the surface of contact between its substance and the substances in which it is imbedded. As has been remarked, this wide distribution furthers metabolism—a metabolism which in this case has, as we infer, the function of generating, not special matters but special motions. Moreover, just as the wave of disturbance a nerve carries produces an effect which is determined, not by anything which is peculiar in itself, but by the peculiar nature of the organ to which it is carried—muscular, glandular or other; so here, the waves diffused from the chromatin do not determine the kinds of changes in the cytoplasm, but simply excite it: its particular activities, whether of movement, absorption, or structural excretion, being determined by its constitution. And then, further, we observe a parallelism between the metabolic changes in the two cases; for, on the one hand, "diminished staining capacity of the chromatin [implying a decreased amount of phosphorus, which gives the staining capacity] occurs during a period of intense constructive activity in the cytoplasm;" and, on the other hand, in high organisms having nervous systems, the intensity of nervous action is measured by the excretion of phosphates—by the using up of the phosphorus contained in nerve-cells. For thus interpreting the respective functions of chromatin and cytoplasm, yet a further reason may be given. One of the earliest general steps in the evolution of the Metazoa, is the differentiation of parts which act from parts which make them act. The Hydrozoa show us this. In the hydroid stage there are no specialized contractile organs: § 74f In Chapters III and IIIA of the First Part, reasons were given for concluding that in the animal organism nitrogenous substances play the part of decomposing agents to the carbo-hydrates—that the molecular disturbance set up by the collapse of a proteid molecule destroys the equilibrium of sundry adjacent carbo-hydrate molecules, and causes that evolution of energy which accompanies their fall into molecules of simpler compounds. Here, if the foregoing argument is valid, we may conclude that this highly complex phosphorized compound which chromatin contains, plays the When contemplated from the suggested point of view, karyokinesis appears to be not wholly incomprehensible. For if the chromatin yields the energy which initiates changes throughout the rest of the cell, we may see why there eventually arises a process for exact halving of the chromatin in a mother-cell between two daughter-cells. To make clear the reason, let us suppose the portioning out of the chromatin leaves one of the two with a sensibly smaller amount than the other. What must result? Its source of activity being relatively less, its rate of growth and its energy of action will be less. If a protozoon, the weaker progeny arising by division of it will originate an inferior stirp, unable to compete successfully with that arising from the sister-cell endowed with a larger portion of chromatin. By continual elimination of the varieties which produce unequal halving, necessarily at a disadvantage if a moiety of their members tend continually to disappear, there will be established a variety in which the halving is exact: the character of this variety being such that all its members aid the permanent multiplication of the species. If, again, the case is that of a metazoon, there will be the same eventual result. An animal or plant in which the chromatin is unequally divided among the cells, must have tissues of uncertain formation. Assume that an organ has, by survival of the But how does all this consist with the conclusion that the chromatin conveys hereditary traits—that it is the vehicle in which the constitutional structure, primarily of the species and secondarily of recent ancestors and parents, is represented? To this question there seems to be no definite answer. We may say only that this second function is not necessarily in conflict with the first. While the unstable units of chromatin, ever undergoing changes, diffuse energy around, they may also be units which, under the conditions furnished by fertilization, gravitate towards the organization of the species. Possibly it may be that the complex combination of proteids, common to chromatin and cytoplasm, is that part in which the constitutional characters inhere; while the phosphorized component, falling from its unstable union and decomposing, evolves the energy which, ordinarily the cause of changes, now excites the more active changes following fertilization. This suggestion harmonizes with the fact that the fertilizing substance which in animals § 74g Before fertilization there occurs in the ovum an incidental process of a strange kind—"strange" because it is a collateral change taking no part in subsequent changes. I refer to the production and extrusion of the "polar bodies." It is recognized that the formation of each is analogous to cell-formation in general; though process and product are both dwarfed. Apart from any ascribed meaning, the fact itself is clear. There is an abortive cell-formation. Abortiveness is seen firstly in the diminutive size of the separated body or cell, and secondly in the deficient number of its chromosomes: a corresponding deficiency being displayed in the group of chromosomes remaining in the egg—remaining, that is (on the hypothesis here to be suggested), in the sister-cell, supposing the polar body to be an aborted cell. It is currently assumed that the end to be achieved by thus extruding part of the chromosomes, is to reduce the remainder to half the number characterizing the species; so that when, to this group in the germ-cell, the sperm-cell brings a similarly-reduced group, union of the two shall bring the chromosomes to the normal number. I venture to suggest another interpretation. In doing this, however, I must forestall a conclusion contained in the next chapter; namely, the conclusion that gamogenesis begins when agamogenesis is being arrested by unfavourable conditions, and that the failing agamogenesis initiates the gamogenesis. Of numerous illustrations to be presently given I will, to make clear the conception, name only one—the formation of fructifying A test fact remains. Sometimes the first polar body extruded undergoes fission while the second is being formed. Maturation of the ovum having been completed, entrance of the spermatozoon, sometimes through the limiting membrane and sometimes through a micropyle or opening in it, takes place. This instantly initiates a series of complicated changes: not many seconds passing before there begins the formation of an aster around one end of the spermatozoon-head. The growth of this aster, apparently by linear rangings of the granules composing the reticulum of the germ-cell, progresses rapidly; while the whole structure hence arising moves inward. Soon there takes place the fusion of this sperm-nucleus with the germ-nucleus to form the cleavage-nucleus, which, after a pause, begins to divide and subdivide in the same manner as cells at large: so presently forming a cluster of cells out of which arise the layers originating the embyro. The details of this process do not concern us. It suffices to indicate thus briefly its general nature. And now ending thus the account of genesis under its histological aspect, we pass to the account of genesis under its wider and more significant aspects. |