THE DEGREE OF LIFE VARIES AS THE DEGREE OF CORRESPONDENCE.
§ 31. Already it has been shown respecting each other component of the foregoing definition, that the life is high in proportion as that component is conspicuous; and it is now to be remarked, that the same thing is especially true respecting this last component—the correspondence between internal and external relations. It is manifest, a priori, that since changes in the physical state of the environment, as also of those mechanical actions and those variations of available food which occur in it, are liable to stop the processes going on in the organism; and since the adaptive changes in the organism have the effects of directly or indirectly counter-balancing these changes in the environment; it follows that the life of the organism will be short or long, low or high, according to the extent to which changes in the environment are met by corresponding changes in the organism. Allowing a margin for perturbations, the life will continue only while the correspondence continues; the completeness of the life will be proportionate to the completeness of the correspondence; and the life will be perfect only when the correspondence is perfect. Not to dwell in general statements, however, let us contemplate this truth under its concrete aspects.
§ 32. In life of the lowest order we find that only the most prevalent co-existences and sequences in the environment, have any simultaneous and successive changes answering to them in the organism. A plant's vital processes display adjustment solely to the continuous co-existence of certain elements and forces surrounding its roots and leaves; and vary only with the variations produced in these elements and forces by the Sun—are unaffected by the countless mechanical movements and contacts occurring around; save when accidentally arrested by these. The life of a worm is made up of actions referring to little else than the tangible properties of adjacent things. All those visible and audible changes which happen near it, and are connected with other changes that may presently destroy it, pass unrecognized—produce in it no adapted changes: its only adjustment of internal relations to external relations of this order, being seen when it escapes to the surface on feeling the vibrations produced by an approaching mole. Adjusted as are the proceedings of a bird to a far greater number of co-existences and sequences in the environment, cognizable by sight, hearing, scent, and their combinations: and numerous as are the dangers it shuns and the needs it fulfils in virtue of this extensive correspondence; it exhibits no such actions as those by which a human being counterbalances variations in temperature and supply of food, consequent on the seasons. And when we see the plant eaten, the worm trodden on, the bird dead from starvation; we see alike that the death is an arrest of such correspondence as existed, that it occurred when there was some change in the environment to which the organism made no answering change, and that thus, both in shortness and simplicity, the life was incomplete in proportion as the correspondence was incomplete. Progress towards more prolonged and higher life, evidently implies ability to respond to less general co-existences and sequences. Each step upwards must consist in adding to the previously-adjusted relations of actions or structures which the organism exhibits, some further relation parallel to a further relation in the environment. And the greater correspondence thus established, must, other things equal, show itself both in greater complexity of life, and greater length of life: a truth which will be fully perceived on remembering the enormous mortality which prevails among lowly-organized creatures, and the gradual increase of longevity and diminution of fertility which we meet with on ascending to creatures of higher and higher developments.
It must be remarked, however, that while length and complexity of life are, to a great extent, associated—while a more extended correspondence in the successive changes commonly implies increased correspondence in the simultaneous changes; yet it is not uniformly so. Between the two great divisions of life—animal and vegetal—this contrast by no means holds. A tree may live a thousand years, though the simultaneous changes going on in it answer only to the few chemical affinities in the air and the earth, and though its serial changes answer only to those of day and night, of the weather and the seasons. A tortoise, which exhibits in a given time nothing like the number of internal actions adjusted to external ones that are exhibited by a dog, yet lives far longer. The tree by its massive trunk and the tortoise by its hard carapace, are saved the necessity of responding to those many surrounding mechanical actions which organisms not thus protected must respond to or die; or rather—the tree and the tortoise display in their structures, certain simple statical relations adapted to meet countless dynamical relations external to them. But notwithstanding the qualifications suggested by such cases, it needs but to compare a microscopic fungus with an oak, an animalcule with a shark, a mouse with a man, to recognize the fact that this increasing correspondence of its changes with those of the environment which characterizes progressing life, habitually shows itself at the same time in continuity and in complication.
Even were not the connexion between length of life and complexity of life thus conspicuous, it would still be true that the life is great in proportion as the correspondence is great. For if the lengthened existence of a tree be looked upon as tantamount to a considerable amount of life; then it must be admitted that its lengthened display of correspondence is tantamount to a considerable amount of correspondence. If, otherwise, it be held that notwithstanding its much shorter existence, a dog must rank above a tortoise in degree of life because of its superior activity; then it is implied that its life is higher because its simultaneous and successive changes are more complex and more rapid—because the correspondence is greater. And since we regard as the highest life that which, like our own, shows great complexity in the correspondences, great rapidity in the succession of them, and great length in the series of them; the equivalence between degree of life and degree of correspondence is unquestionable.
§ 33. In further elucidation of this general truth, and especially in explanation of the irregularities just referred to, it must be pointed out that as the life becomes higher the environment itself becomes more complex. Though, literally, the environment means all surrounding space with the co-existences and sequences contained in it: yet, practically, it often means but a small part of this. The environment of an entozoon can scarcely be said to extend beyond the body of the animal in which the entozoon lives. That of a freshwater alga is virtually limited to the ditch inhabited by the alga. And, understanding the term in this restricted sense, we shall see that the superior organisms inhabit the more complicated environments.
Thus, contrasted with the life found on land, the lower life is that found in the sea; and it has the simpler environment. Marine creatures are affected by fewer co-existences and sequences than terrestrial ones. Being very nearly of the same specific gravity as the surrounding medium, they have to contend with less various mechanical actions. The sea-anemone fixed to a stone, and the acalephe borne along in the current, need to undergo no internal changes such as those by which the caterpillar meets the varying effects of gravitation, while creeping over and under the leaves. Again, the sea is liable to none of those extreme and rapid alterations of temperature which the air suffers. Night and day produce no appreciable modifications in it; and it is comparatively little affected by the seasons. Thus its contained fauna show no marked correspondences similar to those by which air-breathing creatures counterbalance thermal changes. Further, in respect to the supply of nutriment, the conditions are more simple. The lower tribes of animals inhabiting the water, like the plants inhabiting the air, have their food brought to them. The same current which brings oxygen to the oyster, also brings it the microscopic organisms on which it lives: the disintegrating matter and the matter to be integrated, co-exist under the simplest relation. It is otherwise with land animals. The oxygen is everywhere, but the sustenance is not everywhere: it has to be sought; and the conditions under which it is to be obtained are more or less complex. So too with that liquid by the agency of which the vital processes are carried on. To marine creatures water is ever present, and by the lowest is passively absorbed; but to most creatures living on the earth and in the air, it is made available only through those nervous changes constituting perception, and those muscular ones by which drinking is effected. Similarly, after tracing upwards from the Amphibia the widening extent and complexity which the environment, as practically considered, assumes—after observing further how increasing heterogeneity in the flora and fauna of the globe, itself progressively complicates the environment of each species of organism—it might finally be shown that the same general truth is displayed in the history of mankind, who, in the course of their progress, have been adding to their physical environment a social environment that has been growing ever more involved. Thus, speaking generally, it is clear that those relations in the environment to which relations in the organism must correspond, themselves increase in number and intricacy as the life assumes a higher form.
§ 34. To make yet more manifest the fact that the degree of life varies as the degree of correspondence, let me here point out, that those other distinctions successively noted when contrasting vital changes with non-vital changes, are all implied in this last distinction—their correspondence with external co-existences and sequences; and further, that the increasing fulfilment of those other distinctions which we found to accompany increasing life, is involved in the increasing fulfilment of this last distinction. We saw that living organisms are characterized by successive changes, and that as the life becomes higher, the successive changes become more numerous. Well, the environment is full of successive changes, and the greater the correspondence, the greater must be the number of successive changes in the organism. We saw that life presents simultaneous changes, and that the more elevated it is, the more marked the multiplicity of them. Well, besides countless co-existences in the environment, there are often many changes occurring in it at the same moment; and hence increased correspondence with it implies in the organism an increased display of simultaneous changes. Similarly with the heterogeneity of the changes. In the environment the relations are very varied in their kinds, and hence, as the organic actions come more and more into correspondence with them, they too must become very varied in their kinds. So again is it even with definiteness of combination. As the most important surrounding changes with which each animal has to deal, are the definitely-combined changes exhibited by other animals, whether prey or enemies, it results that definiteness of combination must be a general characteristic of the internal ones which have to correspond with them. So that throughout, the correspondence of the internal relations with the external ones is the essential thing; and all the special characteristics of the internal relations, are but the collateral results of this correspondence.
§§35, 36. Before closing the chapter, it will be useful to compare the definition of Life here set forth, with the definition of Evolution set forth in First Principles. Living bodies being bodies which display in the highest degree the structural changes constituting Evolution; and Life being made up of the functional changes accompanying these structural changes; we ought to find a certain harmony between the definitions of Evolution and of Life. Such a harmony is not wanting.
The first distinction we noted between the kind of change shown in Life, and other kinds of change, was its serial character. We saw that vital change is substantially unlike non-vital change, in being made up of successive changes. Now since organic bodies display so much more than inorganic bodies those continuous differentiations and integrations which constitute Evolution; and since the re-distributions of matter thus carried so far in a comparatively short period, imply concomitant re-distributions of motion; it is clear that in a given time, organic bodies must undergo changes so comparatively numerous as to render the successiveness of their changes a marked characteristic. And it will follow a priori, as we found it to do a posteriori, that the organisms exhibiting Evolution in the highest degree, exhibit the longest or the most rapid successions of changes, or both. Again, it was shown that vital change is distinguished from non-vital change by being made up of many simultaneous changes; and also that creatures possessing high vitality are marked off from those possessing low vitality, by the far greater number of their simultaneous changes. Here, too, there is entire congruity. In First Principles, §156, we reached the conclusion that a force falling on any aggregate is divided into several forces; that when the aggregate consists of parts that are unlike, each part becomes a centre of unlike differentiations of the incident force; and that thus the multiplicity of such differentiations must increase with the multiplicity of the unlike parts. Consequently organic aggregates, which as a class are distinguished from inorganic aggregates by the greater number of their unlike parts, must be also distinguished from them by the greater number of simultaneous changes they display; and, further, that the higher organic aggregates, having more numerous unlike parts than the lower, must undergo more numerous simultaneous changes. We next found that the changes occurring in living bodies are contrasted with those occurring in other bodies, as being much more heterogeneous; and that the changes occurring in the superior living bodies are similarly contrasted with those occurring in inferior ones. Well, heterogeneity of function is the correlate of heterogeneity of structure; and heterogeneity of structure is the leading distinction between organic and inorganic aggregates, as well as between the more highly organized and the more lowly organized. By reaction, an incident force must be rendered multiform in proportion to the multiformity of the aggregate on which it falls; and hence those most multi-form aggregates which display in the highest degree the phenomena of Evolution structurally considered, must also display in the highest degree the multiform actions which constitute Evolution functionally considered. These heterogeneous changes, exhibited simultaneously and in succession by a living organism, prove, on further inquiry, to be distinguished by their combination from certain non-vital changes which simulate them. Here, too, the parallelism is maintained. It was shown in First Principles, Chap. XIV, that an essential characteristic of Evolution is the integration of parts, which accompanies their differentiation—an integration shown both in the consolidation of each part, and in the union of all the parts into a whole. Hence, animate bodies having greater co-ordination of parts than inanimate ones must exhibit greater co-ordination of changes; and this greater co-ordination of their changes must not only distinguish organic from inorganic aggregates, but must, for the same reason, distinguish higher organisms from lower ones, as we found that it did. Once more, it was pointed out that the changes constituting Life differ from other changes in the definiteness of their combination, and that a distinction like in kind though less in degree, holds between the vital changes of superior creatures and those of inferior creatures. These, also, are contrasts in harmony with the contrasts disclosed by the analysis of Evolution. We saw (First Principles, §§129-137) that during Evolution there is an increase of definiteness as well as an increase of heterogeneity. We saw that the integration accompanying differentiation has necessarily the effect of increasing the distinctness with which the parts are marked off from each other, and that so, out of the incoherent and indefinite there arises the coherent and definite. But a coherent whole made up of definite parts definitely combined, must exhibit more definitely combined changes than a whole made up of parts that are neither definite in themselves nor in their combination. Hence, if living bodies display more than other bodies this structural definiteness, then definiteness of combination must be a characteristic of the changes constituting Life, and must also distinguish the vital changes of higher organisms from those of lower organisms. Finally, we discovered that all these peculiarities are subordinate to the fundamental peculiarity, that vital changes take place in correspondence with external co-existences and sequences, and that the highest Life is reached, when there is some inner relation of actions fitted to meet every outer relation of actions by which the organism can be affected. But this conception of the highest Life, is in harmony with the conception, before arrived at, of the limit of Evolution. When treating of equilibration as exhibited in organisms (First Principles, §§173, 174), it was pointed out that the tendency is towards the establishment of a balance between inner and outer changes. It was shown that "the final structural arrangements must be such as will meet all the forces acting on the aggregate, by equivalent antagonistic forces," and that "the maintenance of such a moving equilibrium" as an organism displays, "requires the habitual genesis of internal forces corresponding in number, directions, and amounts, to the external incident forces—as many inner functions, single or combined, as there are single or combined outer actions to be met." It was shown, too, that the relations among ideas are ever in progress towards a better adjustment between mental actions and those actions in the environment to which conduct must be adjusted. So that this continuous correspondence between inner and outer relations which constitutes Life, and the perfection of which is the perfection of Life, answers completely to that state of organic moving equilibrium which we saw arises in the course of Evolution and tends ever to become more complete.