FUNCTION.
§ 55. Does Structure originate Function, or does Function originate Structure? is a question about which there has been disagreement. Using the word Function in its widest signification, as the totality of all vital actions, the question amounts to this—does Life produce Organization, or does Organization produce Life?
To answer this question is not easy, since we habitually find the two so associated that neither seems possible without the other; and they appear uniformly to increase and decrease together. If it be said that the arrangement of organic substances in particular forms, cannot be the ultimate cause of vital changes, which must depend on the properties of such substances; it may be replied that, in the absence of structural arrangements, the forces evolved cannot be so directed and combined as to secure that correspondence between inner and outer actions which constitutes Life. Again, to the allegation that the vital activity of every germ whence an organism arises, is obviously antecedent to the development of its structures, there is the answer that such germ is not absolutely structureless.
But in truth this question is not determinable by any evidence now accessible to us. The very simplest forms of life known (even the non-nucleated, if there are any) consist of granulated protoplasm; and granulation implies structure. Moreover since each kind of protozoon, even the lowest, has its specific mode of development and specific activity—even down to bacteria, some kinds of which, otherwise indistinguishable, are distinguishable by their different reactions on their media—we are obliged to conclude that there must be constitutional differences between the protoplasms they consist of, and this implies structural differences. It seems that structure and function must have advanced pari passu: some difference of function, primarily determined by some difference of relation to the environment, initiating a slight difference of structure, and this again leading to a more pronounced difference of function; and so on through continuous actions and reactions.
§ 56. Function falls into divisions of several kinds according to our point of view. Let us take these divisions in the order of their simplicity.
Under Function in its widest sense, are included both the statical and the dynamical distributions of force which an organism opposes to the forces brought to bear on it. In a tree the woody core of trunk and branches, and in an animal the skeleton, internal or external, may be regarded as passively resisting the gravity and momentum which tend habitually or occasionally to derange the requisite relations between the organism and its environment; and since they resist these forces simply by their cohesion, their functions may be classed as statical. Conversely, the leaves and sap-vessels in a tree, and those organs which in an animal similarly carry on nutrition and circulation, as well as those which generate and direct muscular motion, must be considered as dynamical in their actions. From another point of view Function is divisible into the accumulation of energy (latent in food); the expenditure of energy (latent in the tissues and certain matters absorbed by them); and the transfer of energy (latent in the prepared nutriment or blood) from the parts which accumulate to the parts which expend. In plants we see little beyond the first of these: expenditure being comparatively slight, and transfer required mainly to facilitate accumulation. In animals the function of accumulation comprehends those processes by which the materials containing latent energy are taken in, digested, and separated from other materials; the function of transfer comprehends those processes by which these materials, and such others as are needful to liberate the energies they contain, are conveyed throughout the organism; and the function of expenditure comprehends those processes by which the energy is liberated from these materials and transformed into properly co-ordinated motions. Each of these three most general divisions includes several more special divisions. The accumulation of energy may be separated into alimentation and aeration; of which the first is again separable into the various acts gone through between prehension of food and the transformation of part of it into blood. By the transfer of energy is to be understood what we call circulation; if the meaning of circulation be extended to embrace the duties of both the vascular system and the lymphatics. Under the head of expenditure of energy come nervous actions and muscular actions: though not absolutely co-extensive with expenditure these are almost so. Lastly, there are the subsidiary functions which do not properly fall within any of these general functions, but subserve them by removing the obstacles to their performance: those, namely, of excretion and exhalation, whereby waste products are got rid of. Again, disregarding their purposes and considering them analytically, the general physiologist may consider functions in their widest sense as the correlatives of tissues—the actions of epidermic tissue, cartilaginous tissue, elastic tissue, connective tissue, osseous tissue, muscular tissue, nervous tissue, glandular tissue. Once more, physiology in its concrete interpretations recognizes special functions as the ends of special organs—regards the teeth as having the office of mastication; the heart as an apparatus to propel blood; this gland as fitted to produce one requisite secretion and that to produce another; each muscle as the agent of a particular motion; each nerve as the vehicle of a special sensation or a special motor impulse.
It is clear that dealing with Biology only in its larger aspects, specialities of function do not concern us; except in so far as they serve to illustrate, or to qualify, its generalities.
§ 57. The first induction to be here set down is a familiar and obvious one; the induction, namely, that complexity of function is the correlative of complexity of structure. The leading aspects of this truth must be briefly noted.
Where there are no distinctions of structure there are no distinctions of function. A Rhizopod will serve as an illustration. From the outside of this creature, which has not even a limiting membrane, there are protruded numerous processes. Originating from any point of the surface, each of these may contract again and disappear, or it may touch some fragment of nutriment which it draws with it, when contracting, into the general mass—thus serving as hand and mouth; or it may come in contact with its fellow-processes at a distance from the body and become confluent with them; or it may attach itself to an adjacent fixed object, and help by its contraction to draw the body into a new position. In brief, this speck of animated jelly is at once all stomach, all skin, all mouth, all limb, and doubtless, too, all lung. In organisms having a fixed distribution of parts there is a concomitant fixed distribution of actions. Among plants we see that when, instead of a uniform tissue like that of many AlgÆ, everywhere devoted to the same process of assimilation, there arise, as in the higher plants, root and stem and leaves, there arise correspondingly unlike processes. Still more conspicuously among animals do there result varieties of function when the originally homogeneous mass is replaced by heterogeneous organs; since, both singly and by their combinations, modified parts generate modified changes. Up to the highest organic types this dependence continues manifest; and it may be traced not only under this most general form, but also under the more special form that in animals having one set of functions developed to more than usual heterogeneity there is a correspondingly heterogeneous apparatus devoted to them. Thus among birds, which have more varied locomotive powers than mammals, the limbs are more widely differentiated; while the higher mammals, which rise to more numerous and more involved adjustments of inner to outer relations than birds, have more complex nervous systems.
§ 58. It is a generalization almost equally obvious with the last, that functions, like structures, arise by progressive differentiations. Just as an organ is first an indefinite rudiment, having nothing but some most general characteristic in common with the form it is ultimately to take; so a function begins as a kind of action that is like the kind of action it will eventually become, only in a very vague way. And in functional development, as in structural development, the leading trait thus early manifested is followed successively by traits of less and less importance. This holds equally throughout the ascending grades of organisms and throughout the stages of each organism. Let us look at cases: confining our attention to animals, in which functional development is better displayed than in plants.
The first differentiation established separates the two fundamentally-opposed functions above named—the accumulation of energy and the expenditure of energy. Passing over the Protozoa (among which, however, such tribes as present fixed distributions of parts show us substantially the same thing), and commencing with the lowest Coelenterata, where definite tissues make their appearance, we observe that the only large functional distinction is between the endoderm, which absorbs nutriment, and the ectoderm which, by its own contractions and those of the tentacles it bears, produces motion: the contractility being however to some extent shared by the endoderm. That the functions of accumulation and expenditure are here very incompletely distinguished, may be admitted without affecting the position that this is the first specialization which begins to appear. These two most general and most radically-opposed functions become in the Polyzoa, much more clearly marked-off from each other: at the same time that each of them becomes partially divided into subordinate functions. The endoderm and ectoderm are no longer merely the inner and outer walls of the same simple sac into which the food is drawn: but the endoderm forms a true alimentary canal, separated from the ectoderm by a peri-visceral cavity, containing the nutritive matters absorbed from the food. That is to say, the function of accumulating force is exercised by a part distinctly divided from the part mainly occupied in expending force: the structure between them, full of absorbed nutriment, effecting in a vague way that transfer of force which, at a higher stage of evolution, becomes a third leading function. Meanwhile, the endoderm no longer discharges the accumulative function in the same way throughout its whole extent; but its different portions, oesophagus, stomach and intestine, perform different portions of this function. And instead of a contractility uniformly diffused through the ectoderm, there have arisen in the intermediate mesoderm some parts which have the office of contracting (muscles), and some parts which have the office of making them contract (nerves and ganglia). As we pass upwards, the transfer of force, hitherto effected quite incidentally, comes to have a special organ. In the ascidian, circulation is produced by a muscular tube, open at both ends, which, by a wave of contraction passing along it, sends out at one end the nutrient fluid drawn in at the other; and which, having thus propelled the fluid for a time in one direction, reverses its movement and propels it in the opposite direction. By such means does this rudimentary heart generate alternating currents in the nutriment occupying the peri-visceral cavity. How the function of transferring energy, thus vaguely indicated in these inferior forms, comes afterwards to be the definitely-separated office of a complicated apparatus made up of many parts, each of which has a particular portion of the general duty, need not be described. It is sufficiently manifest that this general function becomes more clearly marked-off from the others, at the same time that it becomes itself parted into subordinate functions.
In a developing embryo, the functions or more strictly the structures which are to perform them, arise in the same general order. A like primary distinction very early appears between the endoderm and the ectoderm—the part which has the office of accumulating energy, and the part out of which grow those organs that are the great expenders of energy. Between these two there presently arises the mesoderm in which becomes visible the rudiment of that vascular system, which has to fulfil the intermediate duty of transferring energy. Of these three general functions, that of accumulating energy is carried on from the outset: the endoderm, even while yet incompletely differentiated from the ectoderm, absorbs nutritive matters from the subjacent yelk. The transfer of energy is also to some extent effected by the rudimentary vascular system, as soon as its central cavity and attached vessels are sketched out. But the expenditure of energy (in the higher animals at least) is not appreciably displayed by those ectodermic and mesodermic structures that are afterwards to be mainly devoted to it: there is no sphere for the actions of these parts. Similarly with the chief subdivisions of these fundamental functions. The distinction first established separates the office of transforming other energy into mechanical motion, from the office of liberating the energy to be so transformed. While in the layer between endoderm and ectoderm are arising the rudiments of the muscular system, there is marked out in the ectoderm the rudiment of the nervous system. This indication of structures which are to share between them the general duty of expending energy, is soon followed by changes that foreshadow further specializations of this general duty. In the incipient nervous system there begins to arise that contrast between the cerebral mass and the spinal cord, which, in the main, answers to the division of nervous actions into directive and executive; and, at the same time, the appearance of vertebral laminÆ foreshadows the separation of the osseous system, which has to resist the strains of muscular action, from the muscular system, which, in generating motion, entails these strains. Simultaneously there have been going on similar actual and potential specializations in the functions of accumulating energy and transferring energy. And throughout all subsequent phases the method is substantially the same.
This progress from general, indefinite, and simple kinds of action to special, definite, and complex kinds of action, has been aptly termed by Milne-Edwards, "the physiological division of labour." Perhaps no metaphor can more truly express the nature of this advance from vital activity in its lowest forms to vital activity in its highest forms. And probably the general reader cannot in any other way obtain so clear a conception of functional development in organisms, as he can by tracing out functional development in societies: noting how there first comes a distinction between the governing class and the governed class; how while in the governing class there slowly grow up such differences of duty as the civil, military, and ecclesiastical, there arise in the governed class fundamental industrial differences like those between agriculturists and artizans; and how there is a continual multiplication of such specialized occupations and specialized shares of each occupation.
§ 59. Fully to understand this change from homogeneity of function to heterogeneity of function, which accompanies the change from homogeneity of structure to heterogeneity of structure, it is needful to contemplate it under a converse aspect. Standing alone, the above exposition conveys an idea that is both inadequate and erroneous. The divisions and subdivisions of function, becoming definite as they become multiplied, do not lead to a more and more complete independence of functions; as they would do were the process nothing beyond that just described; but by a simultaneous process they are rendered more mutually dependent. While in one respect they are separating from each other, they are in another respect combining with each other. At the same time that they are being differentiated they are also being integrated. Some illustrations will make this plain.
In animals which display little beyond the primary differentiation of functions, the activity of that part which absorbs nutriment or accumulates energy, is not immediately bound up with the activity of that part which, in producing motion, expends energy. In the higher animals, however, the performance of the alimentary functions depends on the performance of various muscular and nervous functions. Mastication and swallowing are nervo-muscular acts; the rhythmical contractions of the stomach and the allied vermicular motions of the intestines, result from the reflex stimulation of certain muscular coats caused by food; the secretion of the several digestive fluids by their respective glands, is due to nervous excitation of them; and digestion, besides requiring these special aids, is not properly performed in the absence of a continuous discharge of energy from the great nervous centres. Again, the function of transferring nutriment or latent energy, from part to part, though at first not closely connected with the other functions, eventually becomes so. The short contractile tube which propels backwards and forwards the blood contained in the peri-visceral cavity of an ascidian, is neither structurally nor functionally much entangled with the creature's other organs. But on passing upwards through higher types, in which this simple tube is replaced by a system of branched tubes, that deliver their contents through their open ends into the tissues at distant parts; and on coming to those advanced types which have closed arterial and venous systems, ramifying minutely in every corner of every organ; we find that the vascular apparatus, while it has become structurally interwoven with the whole body, has become unable properly to fulfil its office without the help of offices that are quite separated from its own. The heart, though mainly automatic in its actions, is controlled by the nervous system, which takes a share in regulating the contractions both of the heart and the arteries. On the due discharge of the respiratory function, too, the function of circulation is directly dependent: if the aeration of the blood is impeded the vascular activity is lowered; and arrest of the one very soon causes stoppage of the other. Similarly with the duties of the nervo-muscular system. Animals of low organization, in which the differentiation and integration of the vital actions have not been carried far, will move about for a considerable time after being eviscerated, or deprived of those appliances by which energy is accumulated and transferred. But animals of high organization are instantly killed by the removal of these appliances, and even by the injury of minor parts of them: a dog's movements are suddenly brought to an end, by cutting one of the main canals along which the materials that evolve movements are conveyed. Thus while in well-developed creatures the distinction of functions is very marked, the combination of functions is very close. From instant to instant the aeration of blood implies that certain respiratory muscles are being made to contract by nervous impulses passing along certain nerves; and that the heart is duly propelling the blood to be aerated. From instant to instant digestion proceeds only on condition that there is a supply of aerated blood, and a due current of nervous energy through the digestive organs. That the heart of a mammal may act, its muscle substance must be continuously fed with an abundant supply of arterial blood.
It is not easy to find an adequate expression for this double re-distribution of functions. It is not easy to realize a transformation through which the functions thus become in one sense separated and in another sense combined, or even interfused. Here, however, as before, an analogy drawn from social organization helps us. If we observe how the increasing division of labour in societies is accompanied by a closer co-operation; and how the agencies of different social actions, while becoming in one respect more distinct, become in another respect more minutely ramified through one another; we shall understand better the increasing physiological co-operation that accompanies increasing physiological division of labour. Note, for example, that while local divisions and classes of the community have been growing unlike in their several occupations, the carrying on of their several occupations has been growing dependent on the due activity of that vast organization by which sustenance is collected and diffused. During the early stages of social development, every small group of people, and often every family, obtained separately its own necessaries; but now, for each necessary, and for each superfluity, there exists a combined body of wholesale and retail distributors, which brings its branched channels of supply within reach of all. While each citizen is pursuing a business that does not immediately aim at the satisfaction of his personal wants, his personal wants are satisfied by a general agency which brings from all places commodities for him and his fellow-citizens—an agency which could not cease its special duties for a few days, without bringing to an end his own special duties and those of most others. Consider, again, how each of these differentiated functions is everywhere pervaded by certain other differentiated functions. Merchants, manufacturers, wholesale distributors of their several species, together with lawyers, bankers, &c., all employ clerks. In clerks we have a specialized class dispersed through various other classes; and having its function fused with the different functions of these various other classes. Similarly commercial travellers, though having in one sense a separate occupation, have in another sense an occupation forming part of each of the many occupations which it aids. As it is here with the sociological division of labour, so is it with the physiological division of labour above described. Just as we see in an advanced community, that while the magisterial, the clerical, the medical, the legal, the manufacturing, and the commercial activities, have grown distinct, they have yet their agencies mingled together in every locality; so in a developed organism, we see that while the general functions of circulation, secretion, absorption, excretion, contraction, excitation, &c., have become differentiated, yet through the ramifications of the systems apportioned to them, they are closely combined with one another in every organ.
§ 60. The physiological division of labour is usually not carried so far as wholly to destroy the primary physiological community of labour. As in societies the adaptation of special classes to special duties, does not entirely disable these classes from performing one another's duties on an emergency; so in organisms, tissues and structures that have become fitted to the particular offices they have ordinarily to discharge, often remain partially able to discharge other offices. It has been pointed out by Dr. Carpenter, that "in cases where the different functions are highly specialized, the general structure retains, more or less, the primitive community of function which originally characterized it." A few instances will bring home this generalization.
The roots and leaves of plants are widely differentiated in their functions: by the roots, water and mineral substances are absorbed; while the leaves take in, and decompose, carbonic acid. Nevertheless, by many botanists it is held that some leaves, or parts of them, can absorb water; and in what are popularly called "air-plants," or at any rate in some kinds of them, the absorption of water is mainly and in some cases wholly carried on by them and by the stems. Conversely, the underground parts can partially assume the functions of leaves. The exposed tuber of a potato develops chlorophyll on its surface, and in other cases, as in that of the turnip, roots, properly so called, do the like. In trees the trunks, which have in great measure ceased to produce buds, recommence producing them if the branches are cut off; sometimes aerial branches send down roots to the earth; and under some circumstances the roots, though not in the habit of developing leaf-bearing organs, send up numerous suckers. When the excretion of bile is arrested, part goes to the skin and some to the kidneys, which presently suffer under their new task. Various examples of vicarious functions may be found among animals. The excretion of carbonic acid and absorption of oxygen are mainly performed by the lungs, in creatures which have lungs; but in such creatures there continues a certain amount of cutaneous respiration, and in soft-skinned batrachians like the frog, this cutaneous respiration is important. Again, when the kidneys are not discharging their duties a notable quantity of urea is got rid of by perspiration. Other instances are supplied by the higher functions. In man the limbs, which among lower vertebrates are almost wholly organs of locomotion, are specialized into organs of locomotion and organs of manipulation. Nevertheless, the human arms and legs do, when needful, fulfil, to some extent, each other's offices. Not only in childhood and old age are the arms used for purposes of support, but on occasions of emergency, as when mountaineering, they are used by men in full vigour. And that legs are to a considerable degree capable of performing the duties of arms, is proved by the great amount of manipulatory skill reached by them when the arms are absent. Among the perceptions, too, there are examples of partial substitution. The deaf Dr. Kitto described himself as having become excessively sensitive to vibrations propagated through the body; and as so having gained the power of perceiving, through his general sensations, those neighbouring concussions of which the ears ordinarily give notice. Blind people make hearing perform, in part, the office of vision. Instead of identifying the positions and sizes of neighbouring objects by the reflection of light from their surfaces, they do this in a rude way by the reflection of sound from their surfaces.
We see, as we might expect to see, that this power of performing more general functions, is great in proportion as the organs have been but little adapted to their special functions. Those parts of plants which show so considerable an ability to discharge each others' offices, are not widely unlike in their minute structures. And the tissues which in animals are to some extent mutually vicarious, are tissues in which the original cellular composition is still conspicuous. But we do not find evidence that the muscular, nervous, or osseous tissues are able in any degree to perform those processes which the less differentiated tissues perform. Nor have we any proof that nerve can partially fulfil the duty of muscle, or muscle that of nerve. We must say, therefore, that the ability to resume the primordial community of function, varies inversely as the established specialization of function; and that it disappears when the specialization of function becomes great.
§ 61. Something approaching to a priori reasons may be given for the conclusions thus reached a posteriori. They must be accepted for as much as they seem worth.
It may be argued that on the hypothesis of Evolution, Life necessarily comes before organization. On this hypothesis, organic matter in a state of homogeneous aggregation must precede organic matter in a state of heterogeneous aggregation. But since the passing from a structureless state to a structured state, is itself a vital process, it follows that vital activity must have existed while there was yet no structure: structure could not else arise. That function takes precedence of structure, seems also implied in the definition of Life. If Life is shown by inner actions so adjusted as to balance outer actions—if the implied energy is the substance of Life while the adjustment of the actions constitutes its form; then may we not say that the actions to be formed must come before that which forms them—that the continuous change which is the basis of function, must come before the structure which brings function into shape? Or again, since in all phases of Life up to the highest, every advance is the effecting of some better adjustment of inner to outer actions; and since the accompanying new complexity of structure is simply a means of making possible this better adjustment; it follows that the achievement of function is, throughout, that for which structure arises. Not only is this manifestly true where the modification of structure results by reaction from modification of function; but it is also true where a modification of structure otherwise produced, apparently initiates a modification of function. For it is only when such so-called spontaneous modification of structure subserves some advantageous action, that it is permanently established. If it is a structural modification that happens to facilitate the vital activities, "natural selection" retains and increases it; but if not, it disappears.
The connexion which we noted between heterogeneity of structure and heterogeneity of function—a connexion made so familiar by experience as to appear scarcely worth specifying—is clearly a necessary one. It follows from the general truth that in proportion to the heterogeneity of any aggregate, is the heterogeneity it will produce in any incident force (First Principles, §156). The energy continually liberated in the organism by decomposition, is here the incident force; the functions are the variously modified forms produced in its divisions by the organs they pass through; and the more multiform the organs the more multiform must be the differentiations of the force passing through them.
It follows obviously from this, that if structure progresses from the homogeneous, indefinite, and incoherent, to the heterogeneous, definite, and coherent, so too must function. If the number of different parts in an aggregate must determine the number of differentiations produced in the energies passing through it—if the distinctness of these parts from one another, must involve distinctness in their reactions, and therefore distinctness between the divisions of the differentiated energy; there cannot but be a complete parallelism between the development of structure and the development of function. If structure advances from the simple and general to the complex and special, function must do the same.