Inquiring into the pedigree of an idea is not a bad means of roughly estimating its value. To have come of respectable ancestry, is prim facie evidence of worth in a belief as in a person; while to be descended from a discreditable stock is, in the one case as in the other, an unfavorable index. The analogy is not a mere fancy. Beliefs, together with those who hold them, are modified little by little in successive generations; and as the modifications which successive generations of the holders undergo, do not destroy the original type, but only disguise and refine it, so the accompanying alterations of belief, however much they purify, leave behind the essence of the original belief. Considered genealogically, the received theory respecting the creation of the Solar System is unmistakeably of low origin. You may clearly trace it back to primitive mythologies. Its remotest ancestor is the doctrine that the celestial bodies are personages who originally lived on the Earth—a doctrine still held by some of the negroes Livingstone visited. Science having divested the sun and planets of their divine personalities, this old idea was succeeded by the idea which even Kepler entertained, that the planets are guided in their courses by presiding spirits: no longer There is an antagonist hypothesis which does not propose to honour the Unknown Power manifested in the Universe, by such titles as "The Master-Builder," or "The Great Artificer;" but which regards this Unknown Power as probably working after a method quite different from that of human mechanics. And the genealogy of this hypothesis is as high as that of the other is low. It is begotten by that ever-enlarging and ever-strengthening belief in the presence of Law, which accumulated experiences have gradually produced in the human mind. From generation to generation Science has been proving uniformities of relation among phenomena which were before thought either fortuitous or supernatural in their origin—has been showing an established order and a constant causation where ignorance had assumed irregularity and arbitrariness. Each further discovery of Law has increased the presumption that Law is everywhere conformed to. And hence, among other beliefs, has arisen the belief that the Solar System originated, not by manufacture but by evolution. Besides its abstract parentage in those grand general conceptions which positive Science has generated, this hypothesis has a concrete parentage of the highest character. Based as it is on the law of universal gravitation, it may claim for its remote progenitor the great thinker who established that law. The man who gave it its general shape, by promulgating the doctrine that stars result from the aggregation of Thus, even were there but little direct evidence assignable for the Nebular Hypothesis, the probability of its truth would still be strong. Its own high derivation and the low derivation of the antagonist hypothesis, would together form a weighty reason for accepting it—at any rate, provisionally. But the direct evidence assignable for the Nebular Hypothesis is by no means little. It is far greater in quantity, and more varied in kind, than is commonly supposed. Much has been said here and there on this or that class of evidences; but nowhere, as far as we know, have all the evidences, even of one class, been fully stated; and still less has there been an adequate statement of the several groups of evidences in their ensemble. We propose here to do something towards supplying the deficiency: believing that, joined with the À priori reasons given above, the array of À posteriori reasons will leave little doubt in the mind of any candid inquirer. And first, let us address ourselves to those recent discoveries in stellar astronomy, which have been supposed to conflict with this celebrated speculation. When Sir William Herschel, directing his great reflector to various nebulous spots, found them resolvable into clusters of stars, he inferred, and for a time maintained, that all nebulous spots are clusters of stars exceedingly remote from us. But after years of conscientious investigation, he concluded that "there were nebulosities which are Now, even supposing that these inferences respecting the distances and natures of the nebulÆ are valid, they leave the Nebular Hypothesis substantially as it was. Admitting that each of those faint spots is a sidereal system, so far removed that its countless stars give less light than one small star of our own sidereal system; the admission is in no way inconsistent with the belief, that stars and their attendant planets have been formed by the aggregation of nebulous matter. Though, doubtless, if the existence of nebulous matter now in course of concentration be disproved, one of the evidences of the Nebular Hypothesis is destroyed; yet the remaining evidences remain just as they were. It is a perfectly tenable position, that though nebular condensation is now nowhere to be seen in progress, yet it was once going on universally. And, indeed, it might be argued that the still-continued existence of diffused nebulous matter is scarcely to be expected; seeing that the causes which have resulted in the aggregation of one But we do not grant these conclusions. Receiving them though we have, for years past, as established truths, a critical examination of the facts has convinced us that they are quite unwarrantable. They involve so many manifest incongruities, that we have been astonished to find men of science entertaining them even as probable hypotheses. Let us consider these incongruities. In the first place, mark what is inferable from the distribution of nebulÆ. "The spaces which precede or which follow simple nebulÆ," says Arago, "and, À fortiori, groups of nebulÆ, contain generally few stars. Herschel found this rule to be invariable. Thus, every time that, during a short interval, no star approached, in virtue of the diurnal motion, to place itself in the field of his motionless telescope, he was accustomed to say to the secretary who assisted him, 'Prepare to write; nebulÆ are about to arrive.'" How does this fact consist with the hypothesis that nebulÆ are remote galaxies? If there were but one nebula, it would be a curious coincidence were this one nebula so placed in the distant regions of space, as to agree in direction with a starless spot in our own sidereal system. If there were but two nebulÆ, and both were so placed, the coincidence would be excessively strange. What, then, shall we say on finding that there are thousands of nebulÆ so placed? Shall we believe that in thousands of cases these far-removed galaxies happen to agree in their visible positions with the thin places in our own galaxy? Such a belief is next to impossible. Still more manifest does the impossibility of it become when we consider the general "As seen through colossal telescopes," says Humboldt, "the contemplation of these nebulous masses leads us into regions from whence a ray of light, according to an assumption not wholly improbable, requires millions of years to reach our earth—to distances for whose measurement the dimensions (the distance of Sirius, or the calculated distances of the binary stars in Cygnus and the Centaur) of our nearest stratum of fixed stars scarcely suffice." Now, in this somewhat confused sentence there is expressed a more or less decided belief, that the distances of the nebulÆ from our galaxy of stars as much transcend the distances of our stars from each other, as these interstellar distances transcend the dimensions of our planetary system. Just as the diameter of the Earth's orbit, is an inappreciable If one of these supposed galaxies is so remote that its distance dwarfs our interstellar spaces into points, and therefore makes the dimensions of our whole sidereal system relatively insignificant; does it not inevitably follow that the telescopic power required to resolve this remote galaxy into stars, must be incomparably greater than the telescopic power required to resolve the whole of our own galaxy into stars? Is it not certain that an instrument which can just exhibit with clearness the most distant stars of our own cluster, must be utterly unable to separate one of these remote clusters into stars? What, then, are we to think when we find that the same instrument which decomposes hosts of nebulÆ into stars, fails to resolve completely our own Milky Way? Take a homely comparison. Suppose a man surrounded by a swarm of bees, extending, as they sometimes do, so high in the air as to be individually almost invisible, were to declare that a certain spot on the horizon was a swarm of bees; and that he knew it because he could see the bees as separate specks. Astounding as the assertion would be, it would not exceed in incredibility this which we are criticising. Reduce the dimensions to figures, and the absurdity becomes still more palpable. In round numbers, the distance of Sirius from the Earth is a million times the distance of the Earth from the Sun; and, according to the hypothesis, the distance of a nebula is something like a million times the distance of Sirius. Now, our own "starry island, or nebula," as Humboldt calls it, "forms a lens-shaped, flattened, and everywhere detached stratum, whose major axis is estimated at seven or eight hundred, and its minor axis at a hundred and fifty Throughout the above argument, it is tacitly assumed that differences of apparent magnitude among the stars, result mainly from differences of distance. On this assumption the current doctrines respecting the nebulÆ are founded; and this assumption is, for the nonce, admitted in each of the foregoing criticisms. From the time, however, when it was first made by Sir W. Herschel, this assumption has been purely gratuitous; and it now proves to be totally inadmissible. But, awkwardly enough, its truth and its untruth are alike fatal to the conclusions of those who argue after the manner of Humboldt. Note the alternative. On the one hand, what follows from the untruth of the assumption? If apparent largeness of stars is not due to comparative nearness, and their successively smaller sizes to their greater and greater degrees of remoteness, what becomes of the inferences respecting the dimensions of our sidereal system and the distances of nebulÆ? If, as has On the other hand, what follows if the truth of the assumption be granted? The arguments used to justify this assumption in the case of the stars, equally justify it in the case of the nebulÆ. It cannot be contended that, on the average, the apparent sizes of the stars indicate their distances, without its being admitted that, on the average, the apparent sizes of the nebulÆ indicate their distances—that, generally speaking, the larger are the nearer, and the smaller are the more distant. Mark, now, the necessary inference respecting their resolvability. The largest or nearest nebulÆ will be most easily resolved into stars; the successively smaller will be successively more difficult of resolution; and the irresolvable ones will be the smallest ones. This, however, is exactly the reverse of the fact. The largest nebulÆ are either wholly irresolvable, or but partially resolvable under the highest telescopic powers; while a great proportion of quite small nebulÆ, are easily resolved by far less powerful telescopes. An instrument through which the great nebula in Andromeda, two and a half degrees long and one degree broad, appears merely as a diffused light, decomposes a nebula of fifteen minutes Yet a further difficulty remains—one which is, perhaps, still more obviously fatal than the foregoing. This difficulty is presented by the phenomena of the Magellanic clouds. Describing the larger of these, Sir John Herschel says:— "The nubecula major, like the minor, consists partly of large tracts and ill-defined patches of irresolvable nebula, and of nebulosity in every stage of resolution, up to perfectly resolved stars like the Milky Way; as also of regular and irregular nebulÆ properly so called, of globular clusters in every stage of resolvability, and of clustering groups sufficiently insulated and condensed to come under the designation of 'cluster of stars.'"—"Cape Observations," p. 146. In his "Outlines of Astronomy," Sir John Herschel, after repeating this description in other words, goes on to remark that— "This combination of characters, rightly considered, is in a high degree instructive, affording an insight into the probable comparative distance of stars and nebulÆ, and the real brightness of individual stars as compared with one another. Taking the apparent semi-diameter of the nubecula major at three degrees, and regarding its solid form as, roughly speaking, spherical, its nearest and most remote parts differ in their distance from us by a little more than a tenth part of our distance from its centre. The brightness of objects situated in its nearer portions, therefore, cannot be much exaggerated, nor that of its remoter much enfeebled, by their difference of distance. Yet within this globular space we have collected upwards of six hundred stars of the seventh, eighth, ninth, and tenth magnitude, nearly three hundred Now, we think this supplies a reductio ad absurdum of the doctrine we are combating. It gives us the choice of two incredibilities. If we are to believe that one of these nebulÆ is so remote that its hundred thousand stars look like a milky spot, invisible to the naked eye; we must also believe that there are single stars so enormous that though removed to this same distance they remain visible. If we accept the other alternative, and say that many nebulÆ are no further off than our own stars of the eighth magnitude; then it is requisite to say that at a distance not greater than that at which a single star is still faintly visible to the naked eye, there may exist a group of a hundred thousand stars which is invisible to the naked eye. Neither of these positions can be entertained. What, then, is the conclusion that remains? This, only:—that the nebulÆ are not further off from us than parts of our own sidereal system, of which they must be considered members; and that when they are resolvable into discrete masses, these masses cannot be considered as stars in anything like the ordinary sense of that word. And now, having seen the untenability of this idea, Given a rare and widely-diffused mass of nebulous matter, having a diameter, say as great as the distance from the Sun to Sirius, Arguing from the known laws of atomic combination, it will happen that when the nebulous mass has reached a particular stage of condensation—when its internally-situated atoms have approached to within certain distances, have generated a certain amount of heat, and are subject to a certain mutual pressure (the heat and pressure both increasing as the aggregation progresses); some of them will suddenly enter into chemical union. Whether the binary atoms so produced be of kinds such as we know, which is possible; or whether they be of kinds simpler than any we know, which is more probable; matters not to the argument. It suffices that molecular combination of some species will finally take place. When it does take But now mark what must by-and-by happen. When radiation has adequately lowered the temperature, these binary atoms will precipitate; and having precipitated, they will not remain uniformly diffused, but will aggregate into flocculi: just as water, when precipitated from air, collects into clouds. This À priori conclusion is confirmed by the observation of those still extant portions of nebulous matter which constitute comets; for, "that the luminous part of a comet is something in the nature of a smoke, fog, or cloud, suspended in a transparent atmosphere, is evident," says Sir John Herschel. Concluding, then, that a nebulous mass will, in course of time, resolve itself into flocculi of precipitated denser matter, floating in the rarer medium from which they were precipitated, let us inquire what will be the mechanical results. We shall find that they will be quite different from those occurring in the original homogeneous mass; and also quite different from those which would occur among discrete masses dispersed through empty space. Bodies dispersed through empty space, would move in straight lines towards their common centre of gravity. So, too, would bodies dispersed through a resisting medium, provided they were spherical, or of forms presenting symmetrical faces to their lines of movement. But irregular bodies dispersed through a resisting medium, will not move in straight lines towards their common centre of gravity. A mass which presents an irregular face to its line of movement through a resisting medium, must necessarily be deflected from its original course, by the unequal reactions of the medium on its different sides. Hence each flocculus, Now, the probabilities are infinity to one against all the respective motions thus impressed on this rarer medium, exactly balancing each other. And if they do not balance each other, the inevitable result must be a rotation of the whole mass of the rarer medium in one direction. But preponderating momentum in one direction, having caused rotation of the medium in that direction, the rotating medium must in its turn gradually arrest such flocculi as are moving in opposition, and impress its own motion upon them; and thus there will ultimately be formed a rotating medium with suspended flocculi partaking of its motion, while they move in converging spirals towards the common centre of gravity. Before comparing these conclusions with the facts, let us pursue the reasoning a little further, and observe the subordinate actions, and the endless modifications which will result from them. The respective flocculi must not only be drawn towards their common centre of gravity, And now let us return to the visible characters of the nebulÆ, as observed through modern telescopes. Take first the description of those nebulÆ which, by the hypothesis, must be in an early stage of evolution. "Among the irregular nebulÆ," says Sir John Herschel, "may be comprehended all which, to a want of complete, and in most instances, even of partial resolvability by the power of the 20-feet reflector, unite such a deviation from the circular or elliptic form, or such a want of symmetry (with that form) as preclude their being placed in Class 1, or that of regular nebulÆ. This second class comprises many of the most remarkable and interesting objects in the heavens, as well as the most extensive in respect of the area they occupy." Now this coexistence of largeness, irresolvability, irregularity, and indefiniteness of outline, is extremely significant. The fact that the largest nebulÆ are either irresolvable or very difficult to resolve, might have been inferred À priori; seeing that irresolvability, implying that the aggregation of precipitated matter has gone on to but a small extent, will be found in nebulÆ of wide diffusion. Again, the irregularity of these large, irresolvable nebulÆ, might also have been expected; seeing that their outlines, compared by Arago to "the fantastic figures which characterize clouds carried away and tossed about by violent and often contrary winds," are similarly characteristic of a mass not yet gathered together by the mutual attraction of its parts. And once more, the fact that these large, irregular, irresolvable nebulÆ have indefinite outlines—outlines that fade off insensibly into surrounding darkness—is one of like meaning. Speaking generally (and of course differences of distance negative anything beyond an average statement), the spiral nebulÆ are smaller than the irregular nebulÆ, and more resolvable; at the same time that they are not so small as the regular nebulÆ, and not so resolvable. This is as, according to the hypothesis, it should be. The degree of condensation causing spiral movement, is a degree of condensation also implying masses of flocculi that are larger, and therefore more visible, than those existing in an earlier stage. Moreover, the forms of these spiral nebulÆ are quite in harmony with the explanation given. The curves of luminous matter which they exhibit, are not such as would be described by more or less discrete masses starting from a state of rest, and moving through a resisting In the centre of a spiral nebula is seen a mass both more luminous and more resolvable than the rest. Assume that, in process of time, all the spiral streaks of luminous matter which converge to this centre are drawn into it, as they must be; assume further, that the flocculi or other discrete bodies constituting these luminous streaks aggregate into larger masses at the same time that they approach the central group, and that the masses forming this central group also aggregate into larger masses (both which are necessary assumptions); and there will finally result a more or less globular group of such larger masses, which will be resolvable with comparative ease. And, as the coalescence and concentration go on, the constituent masses will gradually become fewer, larger, brighter, and more densely collected around the common centre of gravity. See now how completely this inference agrees with observation. "The circular form is that which most commonly characterizes resolvable nebulÆ," writes Arago. "Resolvable nebulÆ," says Sir John Herschel, "are almost universally round or oval." Moreover, the centre of each group habitually displays a closer clustering of the constituent masses than elsewhere; and it is shown that, under the law of gravitation, which we know extends to the stars, this distribution is not one of equilibrium, but implies progressing concentration. While, just as we inferred that, according to circumstances, the extent to which aggregation has been carried must vary; so we find that, in fact, there are regular nebulÆ of all degrees of resolvability, from those consisting of innumerable minute discrete masses, to those in which there are a few large bodies worthy to be called stars. On the one hand, then, we see that the notion, of Descending now to the Solar System, let us consider first a class of phenomena in some sort transitional—those offered by comets. In comets we have now existing a kind of matter like that out of which, according to the Nebular Hypothesis, the Solar System was evolved. For the explanation of them, we must hence go back to the time when the substances forming the sun and planets were yet unconcentrated. When diffused matter, precipitated from a rarer medium, is aggregating, there are certain to be here and there produced small flocculi, which, either in consequence of local currents or the conflicting attractions of adjacent masses, remain detached; as do, for instance, minute shreds of cloud in a summer sky. In a concentrating nebula these will, in the great majority of cases, eventually coalesce with the larger flocculi near to them. But it is tolerably evident that some of the remotest of these small flocculi, formed at the outermost parts of the nebula, will not coalesce with the larger internal masses, but will slowly follow without overtaking them. The relatively greater resistance of the medium necessitates this. As a single feather falling to the ground will be rapidly left behind by a pillow-full of feathers; so, in their progress to the common centre of gravity, will the outermost shreds of vapour be left behind by the great masses of vapour internally Granting that the great majority of these outlying portions of nebulous matter will be drawn into the central mass long before it reaches a definite form, the presumption is that some of the very small, far-removed portions will not be so; but that before they arrive near it, the central mass will have contracted into a comparatively moderate bulk. What now will be the characters of these late-arriving portions? In the first place, they will have extremely eccentric orbits. Left behind at a time when they were moving towards the centre of gravity in slightly-deflected lines, and therefore having but very small angular velocities, they will approach the central mass in greatly elongated ellipses; and rushing round it will go off again into space. That is, they will behave just as we see comets do; whose orbits are usually so eccentric as to be indistinguishable from parabolas. In the second place, they will come from all parts of the heavens. Our supposition implies that they were left behind at a time when the nebulous mass was of irregular shape, and had not acquired a definite rotary motion; and as the separation of them would not be from any In the third place, applying the reasoning already used, these remotest flocculi of nebulous matter will, at the outset, be deflected from their straight courses to the common centre of gravity, not all on one side, but each on such side as its form determines. And being left behind before the rotation of the nebula is set up, they will severally retain their different individual motions. Hence, following the concentrating mass, they will eventually go round it on all sides; and as often from right to left as from left to right. Here again the inference perfectly corresponds with the facts. While all the planets go round the sun from west to east, comets as often go round the sun from east to west as from west to east. Out of 210 comets known in 1855, 104 are direct, and 106 are retrograde. This equality is what the law of probabilities would indicate. Then, in the fourth place, the physical constitution of comets completely accords with the hypothesis. The ability of nebulous matter to concentrate into a concrete form, depends on its mass. To bring its ultimate atoms into that proximity requisite for chemical union—requisite, that is, for the production of denser matter—their repulsion must be overcome. The only force antagonistic to their repulsion, is their mutual gravitation. That their mutual gravitation may generate a pressure and temperature of sufficient intensity, there must be an enormous accumulation of them; and even then the approximation can slowly go on only as fast as the evolved heat escapes. But where the Yet another very significant fact is seen in the distribution of comets. Though they come from all parts of the heavens, they by no means come in equal abundance from all parts of the heavens; but are far more numerous about the poles of the ecliptic than about its plane. Speaking generally, comets having orbit-planes that are highly inclined to the ecliptic, are comets having orbits of which the major axes are highly inclined to the ecliptic—comets that come from high latitudes. This is not a necessary connexion; for the planes of the orbits might be highly inclined to the ecliptic while the major axes were inclined to it very little. But in the absence of any habitually-observed relation of this kind, it may safely be concluded that, on the average, highly-inclined cometary orbits are cometary orbits with highly-inclined major axes; and that thus, a predominance of cometary orbits cutting the plane of the ecliptic at great angles, implies a predominance of cometary orbits having major axes that cut the ecliptic at great angles. Now the predominance of highly inclined cometary orbits, may be gathered from the following table, compiled by M. Arago, to which we have added a column giving the results up to a date two years later.
At first sight this table seems not to warrant our statement. Assuming the alleged general relation between the inclinations of cometary orbits, and the directions in space from which the comets come, the table may be thought to show that the frequency of comets increases as we progress from the plane of the ecliptic up to 45°, and then decreases up to 90°. But this apparent diminution arises from the fact that the successive zones of space rapidly diminish in their areas on approaching the poles. If we allow for this, we shall find that the excess of comets continues to increase up to the highest angles of inclination. In the table below, which, for convenience, is arranged in inverted order, we have taken as standards of comparison the area of the zone round the pole, and the number of comets it contains; and having ascertained the areas of the other zones, and the numbers of comets they should contain were comets equally distributed, we have shown how great becomes the deficiency in descending from the poles of the ecliptic to its plane.
In strictness, the calculation should be made with reference, not to the plane of the ecliptic, but to the plane of the sun's equator; and this might or might not render the progression more regular. Probably, too, the progression would be made somewhat different were the calculation based, as it should be, not on the inclinations of orbit-planes, but on the inclinations of major axes. But even as it is, the result is sufficiently significant: since, though the conclusion that comets are 11·5 times more abundant about the poles of the ecliptic than about its plane, can be but a rough approximation to the truth, yet no correction of it is likely very much to change this strong contrast. What, then, is the meaning of this fact? It has several meanings. It negatives the supposition, favoured by Laplace among others, that comets are bodies that were wandering in space, or have come from other systems; for the probabilities are infinity to one against the orbits of such wandering bodies showing any definite relation to the plane of the Solar System. For the like reason, it negatives the hypothesis of Lagrange, otherwise objectionable, that comets have resulted from planetary catastrophes analogous to that which is supposed to have produced the asteroids. It clearly shows that, instead of comets being accidental members of the Solar System, they are necessary If we ask for any so-called final cause of this arrangement, none can be assigned: until a probable use for comets has been shown, no reason can be given why they should be thus distributed. But when we consider the question as one of physical science, we see that comets are antithetical to planets, not only in their great rarity, in their motions as indifferently direct or retrograde, in their eccentric orbits, and in the varied directions of those orbits; but we see the antithesis further marked in this, that while planets have some relation to the plane of nebular rotation, comets have some relation to the axis of nebular rotation. See, then, how differently this class of phenomena bears on the antagonistic hypotheses. To the hypothesis commonly received, comets are stumbling-blocks: why there should be hundreds (or probably thousands) of extremely rare aeriform masses rushing to and fro round the sun, it cannot say; any more than it can explain their physical constitutions, their various and eccentric movements, or And now, leaving these erratic bodies, let us turn to the more familiar and important members of the Solar System. It was the remarkable harmony subsisting among their movements, which first made Laplace conceive that the sun, planets, and satellites had resulted from a common genetic process. As Sir William Herschel, by his observations on the nebulÆ, was led to the conclusion that stars resulted from the aggregation of diffused matter; so Laplace, by his observations on the structure of the Solar System, was led to the conclusion that only by the rotation of aggregating matter were its peculiarities to be explained. In his "Exposition du SystÈme du Monde," he enumerates as the leading evidences of evolution:—1. The movements of the planets in the same direction and almost in the same plane; 2. The movements of the satellites in the same direction as those of the planets; 3. The movement of rotation of these various bodies and of the sun in the same direction as the orbitual motions, and in planes little different; 4. The small eccentricity of the orbits of the planets and satellites, as contrasted with the great eccentricity of the cometary orbits. And the probability that these harmonious movements had a common cause, he calculates as two hundred thousand billions to one. Observe that this immense preponderance of probability does not point to a common cause under the form ordinarily conceived—an Invisible Power working after the method of "a Great Artificer;" but to an Invisible Power working after the method of evolution. For though the supporters of the common hypothesis may argue that it Hence the hypothesis of evolution would be the only probable one, even in the absence of any clue to the particular mode of evolution. But when we have, propounded by a mathematician whose authority is second to none, a definite theory of this evolution based on established mechanical laws, which accounts for these various peculiarities, as well as for many minor ones, the conclusion that the Solar System was evolved becomes almost irresistible. The general nature of Laplace's theory scarcely needs stating. Books of popular astronomy have familiarized most readers with his conceptions;—namely, that the matter now condensed into the Solar System, once formed a vast rotating spheroid of extreme rarity extending beyond the orbit of Neptune; that as this spheroid contracted, its rate of rotation necessarily increased; that by augmenting centrifugal force its equatorial zone was from time to time prevented from following any further the concentrating mass, and so remained behind as a revolving ring; that The gradual establishment of a vortical motion such as we saw must eventually arise, and such as we at present see indicated in the spiral nebulÆ, is the gradual approach toward motion in one plane—the plane of greatest momentum. But this plane can only slowly become decided. Flocculi not moving in this plane, but entering into the aggregation at various inclinations, will tend to perform their revolutions round its centre in their own planes; and only in course of time will their motions be partly destroyed by conflicting ones, and partly resolved into the general motion. Especially will the outermost portions of the rotating mass retain for long time their more or less independent directions; seeing that neither by friction nor by the central forces will they be so much restrained. Hence the probabilities are, that the planes of the rings first detached Consider next the movements of the planets on their axes. Laplace alleged as one among other evidences of a common genetic cause, that the planets rotate in a direction the same as that in which they go round the sun, and on axes approximately perpendicular to their orbits. Since he wrote, an exception to this general rule has been discovered in the case of Uranus, and another still more recently in the case of Neptune—judging, at least, from the motions of their respective satellites. This anomaly has been thought to throw considerable doubt on his speculation; and at first sight it does so. But a little reflection will, we believe, show that the anomaly is by no means an insoluble one; and that Laplace simply went too far in putting down as a certain result of nebular genesis, what is, in some instances, only a probable result. The cause he pointed out as determining the direction of rotation, is the greater absolute velocity of the outer part of the detached ring. But there are conditions under which this difference of velocity may be relatively insignificant, even if it exists: and others in which, though existing to a considerable extent, it will not suffice to determine the direction of rotation. Note, in the first place, that in virtue of their origin, the different strata of a concentrating nebulous spheroid, will be very unlikely to move with equal angular velocities: only by friction continued for an indefinite time will their angular velocities be made uniform; and especially will the outermost strata, for reasons just now assigned, maintain for the longest time their differences of movement. Hence, it is possible that in the rings first detached One further fact must be noted. In a much-flattened or lens-shaped spheroid, the form of the ring will vary with its bulk. A very slender ring, taking off just the equatorial surface, will be hoop-shaped; while a tolerably massive ring, trenching appreciably on the diameter of the spheroid, will be quoit-shaped. Thus, then, according to the oblateness of the spheroid and the bulkiness of the detached ring, will the greatest thickness of that ring be in the direction of its plane, or in a direction perpendicular to its plane. But this circumstance must greatly affect the rotation of On referring to the facts, we find them, as far as can be judged, in harmony with this view. Considering the enormous circumference of Uranus's orbit, and his comparatively small mass, we may conclude that the ring from which he resulted was a comparatively slender, and therefore a hoop-shaped one: especially if the nebulous mass was at that time less oblate than afterwards, which it must have been. Hence, a plane of rotation nearly perpendicular to his orbit, and a direction of rotation having no reference to his orbitual movement. Saturn has a mass seven times as great, and an orbit of less than half the diameter; whence it follows that his genetic ring, having less than half the circumference, and less than half the vertical thickness (the spheroid being then certainly as oblate, and indeed more oblate), must have had considerably greater width—must have been less hoop-shaped, and more approaching to the quoit-shaped: notwithstanding difference of density, it must have been at least two or three times as In the case of Jupiter, again, whose mass is three and a half times that of Saturn, and whose orbit is little more than half the size, the genetic ring must, for the like reasons, have been still broader—decidedly quoit-shaped, we may say; and there hence resulted a planet whose plane of rotation differs from that of his orbit by scarcely more than three degrees. Once more, considering the comparative insignificance of Mars, Earth, Venus, and Mercury, it follows that the diminishing circumferences of the rings not sufficing to account for the smallness of the resulting masses, the rings must have been slender ones—must have again approximated to the hoop-shaped; and thus it happens that the planes of rotation again diverge more or less widely from those of the orbits. Taking into account the increasing oblateness of the original spheroid in the successive stages of its concentration, and the different proportions of the detached rings, it seems to us that the respective rotatory motions are not at variance with the hypothesis. Not only the directions, but also the velocities of rotation are thus explicable. It might naturally be supposed that the large planets would revolve on their axes more slowly than the small ones: our terrestrial experiences incline us to expect this. It is a corollary from the Nebular Hypothesis, however, more especially when interpreted as above, that while large planets will rotate rapidly, small ones will rotate slowly; and we find that in fact they do so. Other things equal, a concentrating nebulous mass that is diffused through a wide space, and whose outer parts have, therefore, to travel from great distances to the common centre of gravity, will acquire a high axial velocity in From the planets, let us now pass to the satellites. Here, beyond the conspicuous facts commonly adverted to, that they go round their primaries in the same directions that these turn on their axes, in planes diverging but little from their equators, and in orbits nearly circular, there are several significant traits which must not be passed over. One of them is, that each set of satellites repeats in miniature the relations of the planets to the sun, both in the respects just named, and in the order of the sizes. On progressing from the outside of the Solar System to its centre, we see that there are four large external planets, and four internal ones which are comparatively small. A like contrast holds between the outer and inner satellites in every case. Among the four satellites of Jupiter, the parallel is maintained as well as the comparative smallness of the number allows: the two outer ones are the largest, and the two inner ones the smallest. According to the most recent observations made by Mr. Lassell, the like is true of the four satellites of Uranus. In the case of Saturn, who has Moreover, the analogy does not end here. Just as with the planets, there is at first a general increase of size on travelling inwards from Neptune and Uranus, which do not differ very widely, to Saturn, which is much larger, and to Jupiter, which is the largest; so of the eight satellites of Saturn, the largest is not the outermost, but the outermost save two; so of Jupiter's four secondaries, the largest is the most remote but one. Now these analogies are inexplicable by the theory of final causes. For purposes of lighting, if this be the presumed object of these attendant bodies, it would have been far better had the larger been the nearer: at present, their remoteness renders them of less service than the smallest. To the Nebular Hypothesis, however, these analogies give further support. They show the action of a common physical cause. They imply a law of genesis, holding in the secondary systems as in the primary system. Still more instructive shall we find the distribution of the satellites—their absence in some instances, and their presence in other instances, in smaller or greater numbers. The argument from design fails to account for this distribution. Supposing it be granted that planets nearer the Sun than ourselves, have no need of moons (though, considering that their nights are as dark, and, relatively to their brilliant days, even darker than ours, the need seems quite as great)—supposing this to be granted; what is to be said of Mars, which, placed half as far again from the Sun as we are, has yet no moon? Or again, how are we In a rotating nebulous spheroid that is concentrating into a planet, there are at work two antagonist mechanical tendencies—the centripetal and the centrifugal. While the force of gravitation draws all the atoms of the spheroid together, their tangential momentum is resolvable into two parts, of which one resists gravitation. The ratio which this centrifugal force bears to gravitation, varies, other things equal, as the square of the velocity. Hence, the aggregation of a rotating nebulous spheroid will be more or less strongly opposed by this outward impetus of its particles, according as its rate of rotation is high or low: the opposition, in equal spheroids, being four times as great when the rotation is twice as rapid; nine times as great when it is three times as rapid; and so on. Now, the detachment of a ring from a planet-forming body of nebulous matter, implies that at its equatorial zone the centrifugal force produced by concentration has become so great as to balance gravity. Whence it is tolerably obvious that the detachment of rings will be most frequent from those masses in which the centrifugal tendency bears the greatest ratio to the gravitative tendency. Though it is not possible to calculate what proportions these two tendencies had to each other in the genetic spheroid which produced each planet; it is possible to calculate where each was the greatest and where the least. While it is true that the ratio which centrifugal force now bears to gravity at the equator of each planet, differs widely from that which it bore during the earlier stages of concentration; and while it is
Thus, taking as our standard of comparison the Earth with its one moon, we see that Mercury and Mars, in which the centrifugal force is relatively less, have no moons. Jupiter, in which it is far greater, has four moons. Uranus, in which it is greater still, has certainly four, and probably more than four. Saturn, in which it is the greatest, being nearly one-sixth of gravity, has, including his rings, eleven attendants. The only instance in which there is imperfect conformity with observation is that of Venus. Here it appears that the centrifugal force is relatively a very little greater than in the Earth; and according to the hypothesis, Venus ought, therefore, to have a satellite. Of this seeming anomaly there are two explanations. Not a few astronomers have asserted that Venus has a satellite. Cassini, Short, Montaigne of Limoges, Roedkier, and Montbarron, professed to have seen it; and Lambert calculated its Certain more special peculiarities of the satellites must be mentioned as suggestive. One of them is the relation between the period of revolution and that of rotation. No discoverable purpose is served by making the Moon go round its axis in the same time that it goes round the Earth: for our convenience, a more rapid axial motion would have been equally good; and for any possible inhabitants of the Moon, much better. Against the alternative supposition, that the equality occurred by accident, the probabilities are, as Laplace says, infinity to one. But to this arrangement, which is explicable neither as the result of design nor of chance, the Nebular Hypothesis furnishes a clue. In his "Exposition du SystÈme du Monde," Laplace shows, by reasoning too detailed to be here repeated, that under the circumstances such a relation of movements would be likely to establish itself. Among Jupiter's satellites, which severally display these same synchronous movements, there also exists a still more remarkable relation. "If the mean angular velocity of the first satellite be added to twice that of the third, the sum Most significant fact of all, however, is that presented by the rings of Saturn. As Laplace remarks, they are, as it were, still extant witnesses of the genetic process he propounded. Here we have, continuing permanently, forms of matter like those through which each planet and satellite once passed; and their movements are just what, in conformity with the hypothesis, they should be. "La durÉe de la rotation d'une planete doit donc Être, d'apres cette hypothÈse, plus petite que la durÉe de la rÉvolution du corps le plus voisin qui circule autour d'elle," says Laplace. But besides the existence of these rings, and their movements in the required manner, there is a highly suggestive circumstance which Laplace has not remarked—namely, the place of their occurrence. If the Solar System was produced after the manner popularly supposed, then there is no reason why the rings of Saturn should not have encircled him at a comparatively great distance. Or, instead of being given to Saturn, who in their absence would still have had eight satellites, such rings might have been given to Mars, by way of compensation for a moon. Or they might have been given to Uranus, who, for purposes of illumination, has far greater need of them. On the common hypothesis, we repeat, no reason can be And then, let us not forget the fact, discovered within these few years, that Saturn possesses a nebulous ring, through which his body is seen as through a thick veil. In a position where alone such a thing seems preservable—suspended, as it were, between the denser rings and the planet—there still continues one of these annular masses of diffused matter from which satellites and planets are believed to have originated. From the mechanical arrangements of the Solar System, turn we now to its physical characters; and, first, let us consider the inferences deducible from relative specific gravities. The fact that, speaking generally, the denser planets are the nearer to the Sun, is by some considered as adding another to the many indications of nebular origin. Legitimately assuming that the outermost parts of a rotating nebulous spheroid, in its earlier stages of concentration, will be comparatively rare; and that the increasing density which the whole mass acquires as it contracts, must hold of the outermost parts as well as the rest; it is argued that the rings successively detached will be more and more dense, and will form planets of higher and higher specific gravities. But passing over other objections, this explanation is quite inadequate to account for the facts. Using the Earth as a standard of comparison, the relative densities run thus:—
Two seemingly insurmountable objections are presented by this series. The first is, that the progression is but a broken one. Neptune is as dense as Saturn, which, by the hypothesis, it ought not to be. Uranus is as dense as Jupiter, which it ought not to be. Uranus is denser than Saturn, and the Earth is denser than Venus—facts which not only give no countenance to, but directly contradict, the alleged explanation. The second objection, still more While these anomalies render untenable the position that the relative specific gravities of the planets are direct indications of nebular condensation; it by no means follows that they negative it. On the contrary, we believe that the facts admit of an interpretation quite consistent with the hypothesis of Laplace. There are three possible causes of unlike specific gravities in the members of our Solar System:—1. Differences between the kinds of matter or matters composing them. 2. Differences between the quantities of matter; for, other things equal, the mutual gravitation of atoms will make a large mass denser than a small one. 3. Differences between the structures: the masses being either solid or liquid throughout, or having central cavities filled with elastic aeriform substance. Of these three conceivable causes, that commonly assigned is the first, more or less modified by the second. The extremely low specific gravity of Saturn, which but little exceeds that of cork (and, on this hypothesis, must at his surface be considerably less than that of cork) is supposed to arise from the intrinsic lightness of his substance. That the Sun weighs not much more than Nevertheless, that the Earth, in common with other members of the Solar System, is solid, or else consists of a solid shell having a cavity entirely filled with molten matter, is not an established fact: it is nothing but a supposition. We must not let its familiarity and apparent feasibility delude us into an uncritical acceptance of it. If we find an alternative supposition which, physically considered, is equally possible, we are bound to consider it. And if it not only avoids the difficulties above pointed out, but many others hereafter to be mentioned, we must give it the preference. Before proceeding to consider what the Nebular Hypothesis indicates respecting the internal structures of the Sun and planets, we may state that our reasonings, though of a kind not admitting of direct verification, are nothing more than deductions from the established principles of physics. We have submitted them to an authority not inferior to any that can be named; and while unprepared to commit himself to them, he yet sees nothing to object. Mark now the changes of temperature that must occur in these currents. An aeriform mass ascending from the centre towards either pole, will expand as it approaches the surface, in consequence of the diminution of pressure. But expansion, involving an absorption of heat, will entail a diminished temperature; and the temperature will be further lowered by the greater freedom of radiation into space. This rarefied and cooled mass must be still more rarefied and cooled in its progress over the surface of the spheroid to the equator. Continually thrust further from the pole by the ceaseless accumulation there, it must acquire an ever-increasing rotatory motion and an ever-increasing centrifugal force: whence must follow expansion and absorption of heat. To the refrigeration thus caused must be added that resulting from radiation, which, at each advance towards the equator, will be less hindered. And when the mass we have thus followed arrives at the equator, it will have reached its maximum rarity and maximum coolness. Conversely, every portion of a current proceeding in a diametrical direction from the equator to the centre, must progressively rise in temperature; in virtue alike of the increasing pressure, the gradual arrest of motion, and the diminished rate of radiation. Note, lastly, that this circulation Such being the constitution of a concentrating spheroid of gaseous matter, where will the gaseous matter begin to condense into liquid? The usual assumption has been, that in a nebulous mass approaching towards the planetary form, the liquefaction will first occur at the centre. We believe this assumption is inconsistent with established physical principles. Observe first that it is contrary to analogy. That the matter of the Earth was liquid before any of it became solid, is generally admitted. Where has it first solidified? Not at the centre, but at the surface. Now the general principles which apply to the condensation of liquid matter into solid, apply also to the condensation of gaseous matter into liquid. Hence if the once liquid substance of the Earth first solidified at the surface, the implication is that its once aeriform substance first liquified at the surface. But we have no need to rest in analogy. On considering what must happen in a rotating gaseous spheroid having currents moving as above described, we shall see that external condensation is a corollary. A nebulous mass, when it has arrived at this stage, will consist of an aeriform mixture of various matters; the heavier and more condensible matters being contained in the rarer or less condensible, in the same way that water is contained in air. And the inference must be, that at a certain stage, some of these denser matters will be precipitated in the shape of a cloud. The internal circulation we have described, continuing, as it must, after the formation of this liquid film, there will still go on the radiation of heat, and the progressive aggregation. The film will thicken at the expense of the internal gaseous substances precipitated on it. As it thickens, as the globe contracts, and as the gravitative force augments, the pressure will increase; and the evolution and radiation of heat will go on more rapidly. Eventually, however, when the liquid shell becomes very thick, and the internal cavity relatively small, the obstacle put to the escape of heat by this thick liquid shell, with its slowly-circulating currents, will turn the scale: the temperature of the outer surface will begin to diminish, and a solid crust will form while the internal cavity is yet unobliterated. "But what," it may be asked, "will become of this gaseous nucleus when exposed to the enormous gravitative pressure of a shell some thousands of miles thick? How can aeriform matter withstand such a pressure?" Very readily. It has been proved that even when the heat generated by compression is allowed to escape, some gases remain uncondensible by any force we can produce. An unsuccessful attempt lately made at Vienna to liquify oxygen, clearly shows this enormous resistance. The steel piston employed was literally shortened by the pressure used: and yet the gas remained unliquified! If, then, the expansive force is thus immense when the heat evolved is dissipated, what must it be when that heat is in great measure detained; as in the case we are considering? Indeed, the experiments of M. Cagniard de Latour have shown that gases And now let us see how this hypothesis tallies with the facts. One inference from it must be, that large masses will progress towards final consolidation more slowly than small masses. Though a large concentrating spheroid will, from its superior aggregative force, generate heat more rapidly than a small one; yet, having, relatively to its surface, a much greater quantity of heat to get rid of, it will be longer than a small one in going through the changes we have described. Consequently, at a time when the smaller members of our Solar System have arrived at so advanced a stage of aggregation as almost to have obliterated their central cavities, and so reached high specific gravities; the larger members will still be at that stage in which the central cavities bear great ratios to the surrounding shells, and will therefore have low specific gravities. This contrast is just what we find. The small planets Mercury, Venus, the Earth, and Mars, differing from each other comparatively little in density as in size, are about four times as dense as Jupiter and Uranus, and seven times as dense as Saturn and Neptune—planets exceeding them in size as oranges exceed peas; and they are four times as dense as the Sun, which in mass is nearly 5,000,000 times greater than the smallest of them. On the other hand, the Sun, whose latter stages of aggregation have met with comparatively little of this opposition, and whose atoms tend towards their common centre with a force ten times as great as that which Jupiter's atoms are subject to, has, notwithstanding his immense bulk, reached a specific gravity as great as that of Jupiter; Before pointing out further harmonies let us meet an objection. Laplace, taking for data Jupiter's mass, diameter, and rate of rotation, calculated the degrees of compression at the poles which his centrifugal force should produce, supposing his substance to be homogeneous; and finding that the calculated amount of oblateness was greater than the actual amount, inferred that his substance must be denser towards the centre. The inference seems unavoidable; is diametrically opposed to the hypothesis of a shell of denser matter with a gaseous nucleus; and we confess that on first meeting with this fact we were inclined to think it fatal. But there is a consideration, apt to be overlooked, which completely disposes of it. A compressed elastic medium tends ever with great energy to give a spherical figure to the chamber in which it is confined. This truth is alike mathematically demonstrable, and recognized in practice by every engineer. In the case before us, the expansive power of the gaseous nucleus is such as to balance the gravitation of the shell of the planet; and this power perpetually strives to make the planet a perfect sphere. Thus the tendency of the centrifugal force to produce oblateness, is opposed not only by the force of gravity but by another force of great intensity; and hence the degree of oblateness produced is relatively small. This difficulty being as we think, satisfactorily met, we go on to name some highly significant facts giving indirect support to our hypothesis. And first with respect to the asteroids, or planetoids, as they are otherwise called. Now that these have proved to be so numerous—now that it has become probable that beyond some sixty already discovered Taking Olbers' supposition, then, as the most tenable one, let us ask how such an explosion could have occurred. If planets are internally constituted as is commonly assumed, no conceivable cause of it can be named. A solid mass may crack and fall to pieces, but it cannot violently explode. So, too, with a liquid mass covered by a crust. Though, if contained in an unyielding shell and artificially raised to a very high temperature, a liquid might so expand as to burst the shell and simultaneously flash into vapour; yet, if contained in a yielding crust, like that of a planet, it would not do so: it would crack the crust and give off its expansive force gradually. But the planetary structure above supposed, supplies us with all the requisite conditions to an explosion, and an adequate cause for it. We have in the interior of the mass, a cavity serving as a sufficient reservoir of force. We have this cavity filled with gaseous matters of high tension. We have in the chemical affinities of these matters a source of enormous expansive One further evidence, and that not the least important, is deducible from geology. From the known rate at which the temperature rises as we pierce deeper into the substance of the Earth, it has been inferred that its solid crust is some forty miles thick. And if this be its thickness, we have a feasible explanation of volcanic phenomena, as well as of elevations and subsidences. But proceeding on the current supposition that the Earth's interior is wholly filled with molten matter, Prof. Hopkins has calculated that to cause the observed amount of precession of the equinoxes, the Earth's crust must be at least eight hundred miles thick. Here is an immense discrepancy. However imperfect may be the data from which it is calculated that the Earth is molten at forty miles deep, it seems very unlikely that this conclusion differs from the truth so widely as forty miles does from eight hundred. It seems scarcely conceivable that if the crust is thus thick, it should by its contraction and corrugation, produce mountain chains, as it has done during quite modern geologic epochs. It is not easy on this supposition to explain elevations and subsidences of small area. Neither do the phenomena of volcanoes appear comprehensible. Indeed to account for these, Prof. Hopkins has been obliged to make the gratuitous and extremely improbable assumption, that there are isolated lakes of molten matter enclosed in this thick crust, and situated, as they must be, not far from its outer surface. But irreconcileable as appear the astronomical with the We conceive, then, that the hypothesis we have set forth, is in many respects preferable to that ordinarily received. We can know nothing by direct observation concerning the central parts either of our own planet or any other: indirect methods are alone possible. The idea which has been tacitly adopted, is just as speculative as that we have opposed to it; and the only question is, which harmonizes best with established facts. Thus compared, the advantage is greatly on the side of the new one. It disposes of sundry anomalies, and explains things that seem else incomprehensible. We are no longer obliged to assume such wide differences between the substances of the various planets: we need not think of any of them as like cork or water. We are shown how it happens that the larger planets have so much lower specific gravities than the smaller, instead of having higher ones, as might have been expected; and we are further shown why Saturn is the lightest of all. That Mercury is relatively so much heavier than the Sun; that Jupiter is specifically lighter In considering the specific gravities of the heavenly bodies, we have been obliged to speak of the heat evolved by them. But we have yet to point out the fact that in their present conditions with respect to temperature, we find additional materials for building up our argument; and these too of the most substantial character. Heat must inevitably be generated by the aggregation of diffused matter into a concrete form; and throughout our reasonings we have assumed that such generation of heat has been an accompaniment of nebular condensation. If, then, the Nebular Hypothesis be true, we ought to find in all the heavenly bodies, either present high temperature or marks of past high temperature. As far as observation can reach, the facts prove to be what theory requires. Various evidences conspire to show that, below a certain depth, the Earth is still molten. And that it was once wholly molten, is implied by the circumstance that the rate at which the temperature increases on descending below its surface, is such as would be found in a mass that had been cooling for an indefinite period. The Moon, too, shows us, by its corrugations and its conspicuous volcanoes, that in it there has been a process of refrigeration and contraction, like that which had gone on in the Earth. And in Venus, the existence of mountains similarly indicates an igneous reaction of the interior upon a solidifying crust. But the argument from temperature does not end here. There remains to be noticed a more conspicuous and still more significant fact. If the Solar System was formed by the concentration of diffused matter, which evolved heat while gravitating into its present dense form; then there are certain obvious corollaries respecting the relative temperatures of the resulting bodies. Other things equal, the latest-formed mass will be the latest in cooling—will, for an almost infinite time, possess a greater heat than the earlier-formed ones. Other things equal, the largest mass will, because of its superior aggregative force, become hotter than the others, and radiate more intensely. Other things equal, the largest mass, notwithstanding the higher temperature it reaches, will, in consequence of its relatively small surface, be the slowest in losing its evolved heat. And hence, if there is one mass which was not only formed after the rest, but exceeds them enormously in size, it follows that this one will reach an intensity of incandescence much beyond that reached by the rest; and will continue in a state of intense incandescence long after the rest have cooled. Such a mass we have in the Sun. It is a corollary from the Nebular Hypothesis, that the matter forming the Sun assumed its present concrete form, at a period much more recent than that at which the planets became definite bodies. It may be well to consider a little more closely, what is the probable condition of the Sun's surface. Round the globe of incandescent molten substances, thus conceived to form the visible body of the Sun, there is known to exist a voluminous atmosphere: the inferior brilliancy of the Sun's border, and the appearances during a total eclipse, alike show this. Since the foregoing paragraph was originally published, in 1858, the proposition it enunciates as a corollary from the Nebular Hypothesis, has been in great part verified. The marvellous disclosures made by spectrum-analysis, have proved beyond the possibility of doubt, that the solar atmosphere contains, in a gaseous state, the metals, iron, calcium, magnesium, sodium, chromium, and nickel, along with small quantities of barium, copper, and zinc. That there exist in the solar atmosphere other metals like those which we have on the Earth, is probable; and that it contains elements which are unknown to us, is very possible. Be this as it may, however, the proposition that the Sun's atmosphere consists largely of metallic vapours, must take rank as an established truth; and that the incandescent body of the Sun consists of molten metals, follows And here let us not omit to note also, the significant bearing which Kirchhoff's results have on the doctrine contended for in a foregoing section. Leaving out the barium, copper, and zinc, of which the quantities are inferred to be small, the metals existing as vapours in the Sun's atmosphere, and by consequence as molten in his incandescent body, have an average specific gravity of 4·25. But the average specific gravity of the Sun is about 1. How is this discrepancy to be explained? To say that the Sun consists almost wholly of the three lighter metals named, would be quite unwarranted by the evidence: the results of spectrum-analysis would just as much warrant the assertion that the Sun consists almost wholly of the three heavier. Three metals (two of them heavy) having been already left out of the estimate because their quantities appear to be small, the only legitimate assumption on which to base an estimate of specific gravity, is that the rest are present in something like equal amounts. Is it then that the lighter metals exist in larger proportions in the molten mass, though not in the atmosphere? This is very unlikely: the known habitudes of matter rather imply that the reverse is the case. Is it then that under the conditions of temperature and gravitation existing in the Sun, the state of liquid aggregation is wholly unlike that existing here? This is a very strong assumption: it is one for Considered in their ensemble, the several groups of evidences assigned amount almost to proof. We have seen that, when critically examined, the speculations of late years current respecting the nature of the nebulÆ, commit their promulgators to sundry absurdities; while, on the other hand, we see that the various appearances these nebulÆ present, are explicable as different stages in the precipitation and aggregation of diffused matter. We find that comets, alike by their physical constitution, their immensely-elongated and variously-directed orbits, the distribution of those orbits, and their manifest structural relation to the Solar System, bear testimony to the past existence of that system in a nebulous form. Not only do those obvious peculiarities in the motions of the planets which first suggested the Nebular Hypothesis, supply proofs of it, but on closer examination we discover, in the slightly-diverging inclinations of their orbits, in their various rates of rotation, and their differently-directed axes of rotation, that the planets yield us yet further testimony; while the satellites, by sundry traits, and especially by their occurrence in greater or less abundance where the hypothesis implies greater or less abundance, confirm this testimony. By tracing out the process of planetary condensation, we are led to conclusions respecting the internal structure of planets which at once explain their anomalous specific gravities, and at the same time reconcile various seemingly It remains only to point out that while the genesis of the Solar System, and of countless other systems like it, is thus rendered comprehensible, the ultimate mystery continues as great as ever. The problem of existence is not solved: it is simply removed further back. The Nebular Hypothesis throws no light on the origin of diffused matter; and diffused matter as much needs accounting for as concrete matter. The genesis of an atom is not easier to conceive than the genesis of a planet. Nay, indeed, so far from making the Universe a less mystery than before, it makes it a greater mystery. Creation by manufacture is a much lower thing than creation by evolution. A man can put together a machine; but he cannot make a machine develop itself. The ingenious artizan, able as some have been, so far to imitate vitality as to produce a mechanical pianoforte-player, may in some sort conceive how, by greater skill, a complete man might be artificially produced; but he is unable to conceive how such a complex organism gradually arises out of a minute structureless germ. That our harmonious universe once existed potentially as formless diffused matter, and has slowly grown into its present organized state, is a far more astonishing [I] Cosmos. (Seventh Edition.) Vol. i. pp. 79, 80. [J] Any objection made to the extreme tenuity this involves, is met by the calculation of Newton, who proved that were a spherical inch of air removed four thousand miles from the Earth, it would expand into a sphere more than filling the orbit of Saturn. [K] It is alike remarkable and suggestive, that a parallel relation exists between the distribution of nebulÆ and the axis of our galaxy. Just as comets are abundant around the poles of our Solar System, and rare in the neighbourhood of its plane: so are nebulÆ abundant around the poles of our sidereal system, and rare in the neighbourhood of its plane. [L] It is true that, as expressed by him, these propositions of Laplace are not all beyond dispute. An astronomer of the highest authority, who has favoured me with some criticisms on this essay, alleges that instead of a nebulous ring rupturing at one point, and collapsing into a single mass, "all probability would be in favour of its breaking up into many masses." This alternative result certainly seems to be more likely. But granting that a nebulous ring would break up into many masses, it may still be contended that, since the chances are infinity to one against these being of equal sizes and equidistant, they could not remain evenly distributed round their orbit: this annular chain of gaseous masses would break up into groups of masses; these groups would eventually aggregate into larger groups; and the final result would be the formation of a single mass. I have put the question to an astronomer scarcely second in authority to the one above referred to, and he agrees that this would probably be the process. [M] Since this essay was published, the data of the above calculations have been changed by the discovery that the Sun's distance is three millions of miles less than was supposed. Hence results a diminution in his estimated mass, and in the masses of the planets (except the Earth and Moon). No revised estimate of the masses having yet been published, the table is re-printed in its original form. The diminution of the masses to the alleged extent of about one-tenth, does not essentially alter the relations above pointed out. [N] "MÉcanique CÉleste," p. 346. [O] The impending revision of the estimated masses of the planets, entailed by the discovery that the Sun's distance is less than was supposed, will alter these specific gravities. It will make most of the contrasts still stronger. [P] The reader will perhaps say that this process is the one described as having taken place early in the history of nebular evolution; and this is true. But the same actions will be repeated in media of different densities. [Q] The formation of Saturn's rings is thus rendered comprehensible. [R] Since this was written, M. Poinsot has shown that the precession would be the same whether the Earth were solid or hollow. [S] See Herschel's "Outlines of Astronomy." |