[First published in The National Review for October, 1857, under the title of "The Ultimate Laws of Physiology". The title "Transcendental Physiology", which the editor did not approve, was restored when the essay was re-published with others in 1857.] The title Transcendental Anatomy is used to distinguish that division of biological science which treats, not of the structures of individual organisms considered separately, but of the general principles of structure common to vast and varied groups of organisms,—the unity of plan discernible throughout multitudinous species, genera, and orders, which differ widely in appearance. And here, under the head of Transcendental Physiology, we purpose putting together sundry laws of development and function which hold not of particular kinds or classes of organisms, but of all organisms: laws, some of which have not, we believe, been hitherto enunciated. By way of unobtrusively introducing the general reader to biological truths of this class, let us begin by noticing one or two with which he is familiar. Take first, the relation between the activity of an organ and its growth. This is a universal relation. It holds, not only of a bone, a muscle, a nerve, an organ of sense, a mental faculty; but of every gland, every viscus, every element of the body. It is seen, not in man only, but in each animal which affords us adequate opportunity of tracing it. Always providing that the performance of function is not so excessive as to produce disorder, or to exceed the repairing powers either of the system at large or of the particular agencies by which nutriment is brought to the organ,—always providing Another truth co-extensive with the organic world, is that of hereditary transmission. It is not, as commonly supposed, that hereditary transmission is exemplified merely in re-appearance of the family peculiarities displayed by immediate or remote progenitors. Nor does the law of hereditary transmission comprehend only such more general facts as that modified plants or animals become the parents of permanent varieties; and that new kinds of potatoes, new breeds of sheep, new races of men, have been thus originated. These are but minor exemplifications of the law. Understood in its entirety, the law is that each plant or animal produces others of like kind with itself: the likeness of kind consisting not so much in the repetition of individual traits as in the assumption of the same general structure. This truth has been made by daily illustration so familiar as nearly to have lost its significance. That wheat produces wheat,—that existing oxen are descended from ancestral oxen,—that every unfolding organism ultimately takes the form of the class, order, genus, and species from which it sprang; is a fact which, by force of repetition, has assumed in our minds the character of a necessity. It is in this, however, that the law of hereditary transmission is principally displayed; the phenomena commonly named as exemplifying it being quite subordinate manifestations. And the law, as thus understood, is universal. Not forgetting the apparent, but only apparent, exceptions presented by the strange class of phenomena known as "alternate generation," the truth that like produces like is common to all types of organisms. Let us take next a universal physiological law of a less conspicuous kind. To the ordinary observer, it seems that Yet another generalization of like universality expresses the process of organic development. To the ordinary observer there seems no unity in this. No obvious parallelism exists between the unfolding of a plant and the unfolding of an animal. There is no manifest similarity between the development of a mammal, which proceeds without break from its first to its last stage, and that of an insect, which is divided into strongly-marked stages—egg, larva, pupa, imago. Nevertheless it is now an established fact, that all organisms are evolved after one general method. At the outset the germ of every plant or animal Having thus recognized the scope of Transcendental Physiology as presented in its leading truths, we are prepared for the considerations that are to follow. And first, returning to the last of the great generalizations above given, let us inquire more nearly how this change from the homogeneous to the heterogeneous is carried on. Usually it is said to result from successive differentiations. This, however, cannot be considered a complete account of the process. During the evolution of an organism there occur, not only separations of parts, but coalescences of parts. There is not only segregation, but aggregation. The heart, at first a simple pulsating blood-vessel, by and by twists upon itself and becomes integrated. The bile-cells constituting the rudimentary liver, do not merely diverge from the surface of the intestine in which they at first form a simple layer; but they simultaneously consolidate into a definite organ. And the gradual concentration seen in these and other cases is a part of the developmental process—a part which, though more or less recognized by Milne-Edwards and others, does not seem to have been included as an essential element in it. This progressive integration, manifest alike when tracing up the several stages passed through by every embryo, and when ascending from the lower organic forms to the higher, may be most conveniently studied under several heads. Let us consider first what may be called longitudinal integration. The lower Annulosa—worms, myriapods, &c.—are cha That which we may distinguish as transverse integration, is well illustrated among the Annulosa in the development of the nervous system. Leaving out those simple forms which do not present distinct ganglia, it is to be observed that the lower annulose animals, in common with the larvÆ of the higher, are severally characterized by a double Now it seems to us that the various kinds of integration here exemplified, which are commonly set down as so many independent phenomena, ought to be generalized, and included in the formula describing the process of development. The fact that in an adult crab, many pairs of ganglia originally separate have become fused into a single mass, is a fact only second in significance to the differentiation of its alimentary canal into stomach and intestine. That in the higher Annulosa, a single heart replaces the string of rudimentary hearts constituting the dorsal blood-vessel in the lower Annulosa, (reaching in one species to the number of one hundred and sixty), is a truth as much needing to be comprised in the history of evolution, as is the formation of a respiratory surface by a branched expansion of the skin. A right conception of the genesis of a vertebral column, includes not only the differentiations from which result the chorda dorsalis and the vertebral segments imbedded in it; but quite as much it includes the coalescence of numerous vertebral processes with their respective vertebral bodies. The changes in virtue of which several things become one, demand recognition equally with those in virtue of which one thing becomes several. Evidently, then, the current statement which ascribes the developmental progress to differentiations alone, is incomplete. Adequately to express the facts, we It may not be amiss here to ask—What is the meaning of these integrations? The evidence seems to show that they are in some way dependent on community of function. The eight segments which coalesce to make the head of a centipede, jointly protect the cephalic ganglion, and afford a solid fulcrum for the jaws, &c. The many bones which unite to form a vertebral skull have like uses. In the consolidation of the several pieces which constitute a mammalian pelvis, and in the anchylosis of from ten to nineteen vertebrÆ in the sacrum of a bird, we have kindred instances of the integration of parts which transfer the weight of the body to the legs. The more or less extensive fusion of the tibia with the fibula and the radius with the ulna in the ungulated mammals, whose habits require only partial rotations of the limbs, is a fact of like meaning. And all the instances lately given—the concentration of ganglia, the replacement of many pulsating blood-sacs by fewer and finally by one, the fusion of two uteri into a single uterus—have the same implication. Whether, as in some cases, the integration is merely a consequence of the growth which eventually brings into contact adjacent parts performing similar duties; or whether, as in other cases, there is an actual approximation of these parts before their union; or whether, as in yet other cases, the integration is of that indirect kind which arises when, out of a number of like organs, one, or a group, discharges an ever-increasing share of the common function, and so grows while the rest dwindle and disappear;—the general fact remains the same, that there is a tendency to the unification of parts having similar duties. The tendency, however, acts under limiting conditions; and recognition of them will explain some apparent exceptions. In the human foetus, as in the lower vertebrata, the Closely related to the general truth that the evolution of all organisms is carried on by combined differentiations and integrations, is another general truth, which physiologists appear not to have recognized. When we look at the organic world as a whole, we may observe that, on passing from lower to higher forms, we pass to forms which are not only characterized by a greater differentiation of parts, but are at the same time more completely differentiated from the surrounding medium. This truth may be contemplated under various aspects. In the first place it is illustrated in structure. The advance from the homogeneous to the heterogeneous itself involves an increasing distinction from the inorganic world. In the lowest Protozoa, as some of the Rhizopods, we have a homogeneity approaching to that of air, water, or earth; and the ascent to organisms of greater and greater complexity of structure, is an ascent to organisms which are in that respect more strongly contrasted with the relatively structureless masses in the environment. In form again we see the same truth. A general characteristic of inorganic matter is its indefiniteness of form, and this is also a characteristic of the lower organisms, as compared with the higher. Speaking generally, plants are less definite than animals, both in shape and size—admit of greater modifications from variations of position and nutrition. Among animals, the Amoeba and its allies are not only almost structureless, but are amorphous; and the irregular form is constantly changing. Of the organisms resulting from the aggregation of amoeba-like creatures, we find that while some assume a certain definiteness of form, in their compound shells at least, others, as the Sponges, are irregular. In the Zoophytes and in the Polyzoa, we A parallel increase of contrast is seen in chemical composition. With but few exceptions, and those only partial ones, the lowest animal and vegetal forms are inhabitants of the water; and water is almost their sole constituent. Dessicated Protophyta and Protozoa shrink into mere dust; and among the acalephes we find but a few grains of solid matter to a pound of water. The higher aquatic plants, in common with the higher aquatic animals, possessing as they do much greater tenacity of substance, also contain a greater proportion of the organic elements; and so are chemically more unlike their medium. And when we pass to the superior classes of organisms—land plants and land animals—we find that, chemically considered, they have little in common either with the earth on which they stand or the air which surrounds them. In specific gravity, too, we may note the like. The very simplest forms, in common with the spores and gemmules of the higher ones, are as nearly as may be of the same specific gravity as the water in which they float; and though it cannot be said that among aquatic creatures superior specific gravity is a standard of general superiority, yet we may fairly say that the superior orders of them, when divested of the appliances by which their specific gravity is regulated, differ more from water in their relative weights than do the lower. In terrestrial organisms, the contrast becomes extremely marked. Trees and plants, in common with insects, reptiles, mammals, birds, are all of a specific gravity considerably less than the earth and immensely greater than the air. We see the law similarly fulfilled in respect of temperature. Once more, in greater self-mobility a progressive differentiation is traceable. Dead matter is inert: some form of independent motion is our most general test of life. Passing over the indefinite border-land between the animal and vegetable kingdoms, we may roughly class plants as organisms which, while they exhibit the kind of motion implied in growth, are not only without locomotive power, but in nearly all cases are without the power of moving their parts in relation to one another; and thus are less differentiated from the inorganic world than animals. Though in those microscopic Protophyta and Protozoa inhabiting the water—the spores of algÆ, the gemmules of sponges, and the infusoria generally—we see locomotion produced by ciliary action; yet this locomotion, while rapid relatively to their sizes, is absolutely slow. Of the Coelenterata, a great part are either permanently rooted or habitually stationary, and so have scarcely any self-mobility but that implied in the relative movements of parts; while the rest, of which the common jelly-fish serves as a sample, have mostly but little ability to move themselves through Thus, on contemplating the various grades of organisms in their ascending order, we find them more and more distinguished from their inanimate media in structure, in form, in chemical composition, in specific gravity, in temperature, in self-mobility. It is true that this generalization does not hold with regularity. Organisms which are in some respects the most strongly contrasted with the inorganic world, are in other respects less contrasted than inferior organisms. As a class, mammals are higher than birds; and yet they are of lower temperature, and have smaller powers of locomotion. The stationary oyster is of higher organization than the free-swimming medusa; and the cold-blooded and less heterogeneous fish is quicker in its movements than the warm-blooded and more heterogeneous sloth. But the admission that the several aspects under which this increasing contrast shows itself bear variable ratios to one another, does not negative the general truth enunciated. Looking at the facts in the mass, it cannot be denied that the successively higher groups of organisms are severally characterized, not only by greater differentiation of parts, but also by greater differentiation from the surrounding medium in sundry other physical attributes. It would seem that this peculiarity has some necessary connexion with superior vital manifestations. One of those lowly gelatinous forms which are some of them so tran Thus far we have proceeded inductively, in conformity with established usage; but it seems to us that much may be done in this and other departments of biologic inquiry by pursuing the deductive method. The generalizations at present constituting the science of physiology, both general and special, have been reached a posteriori; but certain fundamental data have now been discovered, starting from which we may reason our way a priori, not only to some of the truths that have been ascertained by observation and experiment, but also to some others. The possibility of such a priori conclusions will be at once recognized on considering some familiar cases. Chemists have shown that a necessary condition to vital activity in animals is oxidation of certain matters contained in the body either as components or as waste products. The oxygen requisite for this oxidation is contained in the surrounding medium—air or water, as the case may be. If the organism be minute, mere contact of its external surface with the oxygenated medium achieves the requisite oxidation; but if the organism is bulky, and so exposes a surface Similarly with respect to nutriment. There are entozoa which, living in the insides of other animals, and being constantly bathed by nutritive fluids, absorb a sufficiency through their outer surfaces; and so have no need of stomachs, and do not possess them. But all other animals, inhabiting media that are not in themselves nutritive, but only contain masses of food here and there, must have appliances by which these masses of food may be utilized. Evidently mere external contact of a solid organism with a solid portion of nutriment, could not result in the absorption of it in any moderate time, if at all. To effect absorption, there must be both a solvent or macerating action, and an extended surface fit for containing and imbibing the dissolved products: there must be a digestive cavity. Thus, given the ordinary conditions of animal life, and the possession of stomachs by all creatures living under these conditions may be deductively known. Carrying out the train of reasoning still further, we may infer the existence of a vascular system or something equivalent to it, in all creatures of any size and activity. In a comparatively small inert animal, such as the hydra, which consists of little more than a sac having a double wall—an outer layer of cells forming the skin, and an inner layer forming the digestive and absorbent surface—there is no need for a special apparatus to diffuse through the body It is manifest, then, that setting out from certain known fundamental conditions to vital activity, we may deduce from them sundry of the chief characteristics of organized bodies. Doubtless these known fundamental conditions have been inductively established. But what we wish to show is that, given these inductively-established primary facts in physiology, we may with safety draw certain general deductions from them. And, indeed, the legitimacy of such deductions, though not formally acknowledged, is practically recognized in the convictions of every physiologist, as may be readily proved. Thus, were a physiologist to find a creature exhibiting complex and variously co-ordinated movements, and yet having no nervous system; he would be less astonished at the breach of his empirical But the illustrations above given go far to show, that it may to a considerable extent be safely used as an independent instrument of research. The necessities for a nutritive system, a respiratory system, and a vascular system, in all animals of size and vivacity, seem to us legitimately inferable from the conditions to continued vital activity. Given the physical and chemical data, and these structural peculiarities may be deduced with as much certainty as may the hollowness of an iron ball from its power of floating in water. It is not, of course, asserted that the more special physiological truths can be deductively reached. The argument by no means implies this. Legitimate deduction presupposes adequate data; and in respect to the special phenomena of organic growth, structure, and function, adequate data are unattainable, and will probably ever remain so. It is only in the case of the more general physiological truths, such as those above instanced, where we have something like adequate data, that deductive reasoning becomes possible. And here is reached the stage to which the foregoing In an essay on "Progress: its Law and Cause," elsewhere published, We here propose in the first place to show, that there is another general truth closely connected with the above; and in common with it underlying explanations of all progress, and therefore the progress of organisms—a truth which may indeed be considered as taking precedence of it in respect of time, if not in respect of generality. This truth is, that the condition of homogeneity is a condition of unstable equilibrium. The phrase unstable equilibrium is one used in mechanics Of mechanical ones the most familiar is that of the scales. If accurately made and not clogged by dirt or rust, a pair of scales cannot be perfectly balanced: eventually one scale will descend and the other ascend—they will assume a heterogeneous relation. Again, if we sprinkle over the surface of a liquid a number of equal-sized particles, having an attraction for one another, they will, no matter how uniformly distributed, by and by concentrate irregularly into groups. Were it possible to bring a mass of water into a state of perfect homogeneity—a state of complete quiescence, and exactly equal density throughout—yet the radiation of heat from neighbouring bodies, by affecting differently its different parts, would soon produce inequalities of density and consequent currents; and would so render it to that extent heterogeneous. Take a piece of red-hot matter, and however evenly heated it may at first be, it will quickly cease to be so: the exterior, cooling faster than the interior, will become different in temperature from it. And the lapse into heterogeneity of temperature, so obvious in this extreme case, is ever taking place more or less in all cases. The actions of chemical forces supply other illus The instability thus variously illustrated becomes still more manifest if we consider its rationale. It is consequent on the fact that the several parts of any homogeneous mass are necessarily exposed to different forces—forces which differ either in their kinds or amounts; and being exposed to different forces they are of necessity differently modified. The relations of outside and inside, and of comparative nearness to neighbouring sources of influence, imply the reception of influences which are unlike in quantity or quality or both; and it follows that unlike changes will be wrought in the parts dissimilarly acted upon. The unstable equilibrium of any homogeneous aggregate can thus be shown both inductively and deductively. And now let us consider the bearing of this general truth on the evolution of organisms. The germ of a plant or animal is one of these homogeneous aggregates—relatively homogeneous if not absolutely so—whose equilibrium is unstable. But it has not simply the ordinary instability of homogeneous aggregates: it has something more. For it consists of units which are themselves specially characterized by instability. The constituent molecules of organic matter Moreover, the process must repeat itself in each of the subordinate groups of organic units which are differentiated by the modifying forces. Each of these subordinate groups, like the original group, must gradually, in obedience to the influences acting on it, lose its balance of parts—must pass from a uniform into a multiform state. And so on continuously. Thus, starting from the general laws of things, and the known chemical attributes of organic matter, we may conclude deductively that the homogeneous germs of organisms have a peculiar proclivity towards a non-homogeneous state; which may be either the state we call decomposition, or the state we call organization. At present we have reached a conclusion only of the most general nature. We merely learn that some kind of heterogeneity is inevitable; but as yet there is nothing to tell us what kind. Besides that orderly heterogeneity which distinguishes organisms, there is the disorderly or chaotic heterogeneity, into which a loose mass of inorganic matter lapses; and at present no reason has been given why the homogeneous germ of a plant or animal should not lapse into the disorderly instead of the orderly heterogeneity. But by pursuing still further the line of argument hitherto followed we shall find a reason. We have seen that the instability of homogeneous Take a mass of unorganized but organizable matter—either the body of one of the lowest living forms, or the germ of one of the higher. Consider its circumstances. It is immersed in water or air; or it is contained within a parent organism. Wherever placed, however, its outer and inner parts stand differently related to surrounding existences—nutriment, oxygen, and the various stimuli. But this is not all. Whether it lies quiescent at the bottom of the water, whether it moves through the water preserving some definite attitude, or whether it is in the inside of an adult; it equally results that certain parts of its surface are more directly exposed to surrounding agencies than other parts—in some cases more exposed to light, heat, or oxygen, and in others to the maternal tissues and their contents. The destruction of its original equilibrium is therefore certain. It may take place in one of two ways. Either the disturbing forces may be such as to overbalance the affinities of the organic elements, in which case there results that chaotic heterogeneity known as decomposition; or, as is ordinarily the case, such changes are induced as do not destroy the organic compounds, but only modify them: the parts most exposed to the modifying forces being most modified. Hence result those first differentiations which constitute incipient organization. From the point Note first what appear to be exceptions, as the Amoeba. In this creature and its allies, the substance of the jelly-like body remains throughout life unorganized—undergoes no permanent differentiations. But this fact, which seems directly opposed to our inference, is really one of the most significant evidences of its truth. For what is the peculiarity of the Rhizopods, exemplified by the Amoeba? They undergo perpetual and irregular changes of shape—they show no persistent relations of parts. What lately formed a portion of the interior is now protruded, and, as a temporary limb, is attached to some object it happens to touch. What is now a part of the surface will presently be drawn, along with the atom of nutriment sticking to it, into the centre of the mass. Thus there is an unceasing interchange of places; and the relations of inner and outer have no settled existence. But by the hypothesis, it is only in virtue of their unlike positions with respect to modifying forces, that the originally-like units of a living mass become unlike. We must not therefore expect any established differentiation of parts in creatures which exhibit no established differences of position in their parts. This negative evidence is borne out by abundant positive evidence. When we turn from these ever-changing specks of living jelly to organisms having unchanging distributions of substance, we find differences of tissue corresponding to differences of relative position. In all the higher Protozoa, as also in the Protophyta, we meet with a fundamental differentiation into cell-membrane and cell-contents, answering to that fundamental contrast of conditions implied by the words outside and inside. And on passing from what are roughly classed as unicellular organisms to the lowest of those which consist of aggregated cells, we equally observe the connexion between structural differences After this primary modification, by which the outer tissues are differentiated from the inner, the next in order of constancy and importance is that by which some part of the outer tissues is differentiated from the rest; and this corresponds with the almost universal fact that some part of the outer tissues is more directly exposed to certain environing influences than the rest. Here, as before, the apparent exceptions are extremely significant. Some of the lowest vegetable organisms, as the Hematococci and Protococci, evenly imbedded in a mass of mucus, or dispersed through the Arctic snow, display no differentiations of surface: the several parts of the surface being subjected to no definite contrasts of conditions. The Thalassicolla above mentioned, unfixed, and rolled about by the waves, presents all its sides successively to the same agencies; and all its sides are alike. A ciliated sphere like the Volvox has no parts of its periphery unlike other parts; and it is not to be expected that it should have; seeing that as it revolves in all directions, it does not, in traversing the water, permanently expose any part to special conditions. But when we come to creatures that are either fixed, or while moving, severally preserve a definite attitude, we no longer find uniformity of surface. The gemmule of a Zoophyte, which during its locomotive stage is distinguishable only into outer and inner tissues, no sooner takes root The principle thus displayed in the humbler forms of life, is traceable during the development of the higher; though being here soon masked by the assumption of the hereditary type, it cannot be traced far. Thus the "mulberry-mass" into which a fertilized ovum of a vertebrate animal first resolves itself, soon begins to exhibit a difference between the outer and inner parts answering to the difference of circumstances. The peripheral cells, after reaching a more complete development than the central ones, coalesce into a membrane enclosing the rest; and then the cells lying next to these outer ones become aggregated with them, and increase the thickness of the germinal membrane, while the central cells liquefy. Again, one part of the germinal membrane presently becomes distinguishable as the germinal spot; and without asserting that the cause of this is to be found in the unlike relations which the respective parts of the germinal membrane bear to environing influences, it is clear that we have in these unlike relations an element of disturbance tending to destroy the original homogeneity of the germinal membrane. Further, the germinal membrane by and by divides into two layers, internal and external; the one in contact with the liquefied interior part or yelk, the other exposed to the surrounding fluids: this contrast of circumstances being in obvious correspondence with the contrast of structures which follows it. Once more, the subsequent appearance of the vascular layer between these mucous and serous layers, as they have been named, admits of a like interpretation. And in this and the various complications which now begin to show themselves, we may see coming into play that general law of the multiplication of effects flowing from one Confining our remarks, as we do, to the most general facts of development, we think that some light is thus thrown on them. That the unstable equilibrium of a homogeneous germ must be destroyed by the unlike exposure of its several units to surrounding influences, is an a priori conclusion. And it seems also to be an a priori conclusion, that the several units thus differently acted upon, must either be decomposed, or must undergo such modifications of nature as may enable them to live in the respective circumstances they are thrown into: in other words—they must either die or become adapted to their conditions. Indeed, we might infer as much without going through the foregoing train of reasoning. The superficial organic units (be they the outer cells of a "mulberry-mass," or be they the outer molecules of an individual cell) must assume the function which their position necessitates; and assuming this function, must acquire such character as performance of it involves. The layer of organic units lying in contact with the yelk must be those through which the yelk is absorbed; and so must be adapted to the absorbent office. On this condition only does the process of organization appear possible. We might almost say that just as some race of animals, which multiplies and spreads into divers regions of the earth, becomes differentiated into several races through the adaptation of each to its conditions of life; so, the originally homogeneous population of cells arising in a fertilized germ-cell, becomes divided into several populations of cells that grow unlike in virtue of the unlikeness of their circumstances. Moreover, it is to be remarked in further proof of our position, that it finds its clearest and most abundant illustrations where the conditions of the case are the simplest But, as already more than once hinted, this principle, understood in the simple form here presented, supplies no key to the detailed phenomena of organic development. It fails entirely to explain generic and specific peculiarities; and leaves us equally in the dark respecting those more important distinctions by which families and orders are marked out. Why two ova, similarly exposed in the same pool, should become the one a fish, and the other a reptile, it cannot tell us. That from two different eggs placed under the same hen, should respectively come forth a duckling and a chicken, is a fact not to be accounted for on the hypothesis above developed. Here we are obliged to fall back upon the unexplained principle of hereditary transmission. The capacity possessed by an unorganized germ of unfolding into a complex adult which But our argument does not commit us to any such far-reaching speculation as this; which we introduce simply as suggested by it, not involved. All we are here concerned to show, is, that the deductive method aids us in interpreting some of the more general phenomena of development. That all homogeneous aggregates are in unstable equilibrium is a universal truth, from which is deducible the instability of every organic germ. From the known sensitiveness of organic compounds to chemical, thermal, and other disturbing forces, we further infer the unusual instability of every organic germ—a proneness far beyond that of other homogeneous aggregates to lapse into a heterogeneous state. By the same line of reasoning we are led to the additional inference, that the first divisions into which a germ resolves itself, being severally in a state of unstable equilibrium, are similarly prone to undergo further changes; and so on continuously. Moreover, we have found it to be equally an a priori conclusion, that as, in all other cases, the loss of homogeneity is due to the different degrees and kinds of force brought to bear on the different parts; so, in this case too, difference of circumstances is the primary cause of differentiation. Add to which, that as the several changes undergone by the respective parts thus diversely acted upon, are changes which do not destroy their vital activity, they must be changes which bring that vital activity into subordination to the incident forces—they must be adaptations; and the like must be in some sense true of all the subsequent changes. Thus by deductive reasoning we get some insight into the method of organization. However unable we are, and probably ever shall be, to comprehend the A controversy now going on among zoologists, opens yet another field for the application of the deductive method. We believe that the question whether there does or does not exist a necessary correlation among the several parts of an organism is determinable a priori. Cuvier, who first asserted this necessary correlation, professed to base his restorations of extinct animals upon it. Geoffroy St. Hilaire and DeBlainville, from different points of view, contested Cuvier's hypothesis; and the discussion, which has much interest as bearing on paleontology, has been recently revived under a somewhat modified form: Professors Huxley and Owen being respectively the assailant and defender of the hypothesis. Cuvier says—"Comparative anatomy possesses a principle whose just development is sufficient to dissipate all difficulties; it is that of the correlation of forms in organized beings, by means of which every kind of organized being might, strictly speaking, be recognized by a fragment of any of its parts. Every organized being constitutes a whole, a single and complete system, whose parts mutually correspond and concur by their reciprocal reaction to the same definite end. None of these parts can be changed without affecting the others; and consequently each taken separately, indicates and gives all the rest." He then gives illustrations: arguing that the carnivorous form of tooth necessitating a certain action of the jaw, implies a particular form in its condyles; implies also limbs fit for seizing and holding prey; therefore implies claws, a certain structure of the leg-bones, a certain form It will be seen that the method of restoration here contended for, is based on the alleged physiological necessity of the connexion between these several peculiarities. The argument used is, not that a scapula of a certain shape may be recognized as having belonged to a carnivorous mammal because we always find that carnivorous mammals do possess such scapulas; but the argument is that they must possess them, because carnivorous habits would be impossible without them. And in the above quotation Cuvier asserts that the necessary correlation which he considers so obvious in these cases, exists throughout the system: admitting, however, that in consequence of our limited knowledge of physiology we are unable in many cases to trace this necessary correlation, and are obliged to base our conclusions upon Now Professor Huxley has recently shown that, in the first place, this empirical method, which Cuvier introduces as quite subordinate, and to be used only in aid of the rational method, is really the method which Cuvier habitually employed—the so-called rational method remaining practically a dead letter; and, in the second place, he has shown that Cuvier himself has in several places so far admitted the inapplicability of the rational method, as virtually to surrender it as a method. But more than this, Professor Huxley contends that the alleged necessary correlation is not true. Quite admitting the physiological dependence of parts on each other, he denies that it is a dependence of a kind which could not be otherwise. "Thus the teeth of a lion and the stomach of the Thus much is needful to give an idea of the controversy. It is not here our purpose to go more at length into the evidence cited on either side. We simply wish to show that the question may be settled deductively. Before going on to do this, however, let us briefly notice two collateral points. In his defence of the Cuvierian doctrine, Professor Owen avails himself of the odium theologicum. He attributes to his opponents "the insinuation and masked advocacy of the doctrine subversive of a recognition of the Higher Mind." Now, saying nothing about the questionable propriety of thus prejudging an issue in science, we think this is an unfortunate accusation. What is there in the hypothesis of necessary, as distinguished from actual, correlation of parts, which is particularly in harmony with Theism? Maintenance of the necessity, whether of sequences or of coexistences, is commonly thought rather a derogation from divine power than otherwise. Cuvier says—"None of these parts can be changed without affecting the others; and consequently, each taken separately, indicates and gives all the rest." That is to say, in the nature of things the correlation could not have been otherwise. On the other hand, Professor Huxley says we have no warrant for asserting that the correlation could not have been otherwise; but have not a little reason for thinking that the same physiological ends might have been differently achieved. On the other point we lean to the opinion of Professor Owen. We agree with him in thinking that where a rational correlation (in the highest sense of the term) can be made out, it affords a better basis for deduction than an empirical correlation ascertained only by accumulated observations. Premising that by rational correlation is not meant one in which we can trace, or think we can trace, a design, but one of which the negation is inconceivable (and this is the species of correlation which Cuvier's principle implies); then we hold that our knowledge of the correlation is of a more certain kind than where it is simply inductive. We think that Professor Huxley, in his anxiety to avoid the error of making Thought the measure of Things, does not sufficiently bear in mind the fact, that as our notion of necessity is determined by some absolute uniformity pervading all orders of our experiences, it follows that an organic correlation which cannot be conceived otherwise, is guaranteed by a much wider induction than one ascertained only by the observation of organisms. But the truth is, that there are relatively few organic correlations of which the negation is inconceivable. If we find the skull, vertebrÆ, ribs, and phalanges of some quadruped as large as an elephant; we may indeed be certain that the legs of this quadruped were of considerable size—much larger than those of a rat; and our reason for conceiving this correlation as necessary, is, that it is based, not only upon our experiences of moving organisms, but upon all our mechanical experiences relative to masses and their supports. But even were there many physiological correlations really of this order, which there are not, there would be danger in pursuing this line of reasoning, in consequence of the liability to include within the class of truly necessary correlations, those which are not such. For instance, there With regard to the great mass of the correlations, however, including all the indirect ones, Professor Huxley seems to us warranted in denying that they are necessary; and we now propose to show deductively the truth of his thesis. Let us begin with an analogy. Whoever has been through an extensive iron-works, has seen a gigantic pair of shears worked by machinery, and used for cutting in two, bars of iron that are from time to time thrust between its blades. Supposing these blades to be the only visible parts of the apparatus, anyone observing their movements (or rather the movement of one, for the other is commonly fixed), will see from the manner in which the angle increases and decreases, and from the From a converse point of view the same truth is manifest. Bearing in mind the above analogy, it will be foreseen that an alteration in one part of an organism will not necessarily entail some one specific set of alterations in the other parts. Cuvier says, "None of these parts can be changed without affecting the others; and consequently, each taken separately, indicates and gives all the rest." The first of these propositions may pass, but the second, which it is alleged follows from it, is not true; for it If you set a brick on end and thrust it over, you can predict with certainty in what direction it will fall, and what attitude it will assume. If, again setting it up, you put another on the top of it, you can no longer foresee with accuracy the results of an overthrow; and on repeating the experiment, no matter how much care is taken to place the bricks in the same positions, and to apply the same degree of force in the same direction, the effects will on no two occasions be exactly alike. And in proportion as the aggregation is complicated by the addition of new and unlike parts, will the results of any disturbance become more varied and incalculable. The like truth is curiously illustrated by locomotive engines. It is a fact familiar to mechanical engineers and engine-drivers, that out of a number of engines built as accurately as possible to the same pattern, no two will act in just the same manner. Each will have its peculiarities. The play of actions and reactions will so far differ, that under like conditions each will behave in a somewhat different way; and every driver has to learn the idiosyncrasies of his own engine before he can work it to the greatest advantage. In organisms themselves this indefiniteness of mechanical reaction is clearly traceable. Two boys throwing stones will always differ more or less in their attitudes, as will two billiard-players. The familiar fact that each individual has a characteristic gait, illustrates the point still better. The rhythmical motion of the leg is simple, and on the Cuvierian hypothesis, should react on the body in some uniform way. But in consequence of those slight differences of structure which consist with identity of species, no two individuals make exactly similar movements either of the trunk or the When we pass to disturbing forces of a non-mechanical kind, the same truth becomes still more conspicuous. Expose several persons to a drenching storm; and while one will subsequently feel no appreciable inconvenience, another will have a cough, another a catarrh, another an attack of diarrhoea, another a fit of rheumatism. Vaccinate several children of the same age with the same quantity of virus, applied to the same part, and the symptoms will not be quite alike in any of them, either in kind or intensity; and in some cases the differences will be extreme. The quantity of alcohol which will send one man to sleep, will render another unusually brilliant—will make this maudlin, and that irritable. Opium will produce either drowsiness or wakefulness: so will tobacco. Now in all these cases—mechanical and other—some force is brought to bear primarily on one part of an organism, and secondarily on the rest; and, according to the doctrine of Cuvier, the rest ought to be affected in a specific way. We find this to be by no means the case. The original change produced in one part does not stand in any necessary correlation with every one of the changes produced in the other parts; nor do these stand in any necessary correlation with one another. The functional alteration which the disturbing force causes in the organ directly acted upon, does not involve some particular set of functional alterations in the other organs; but will be followed by some one out of various sets. And it is a manifest corollary, that any structural alteration which may eventually be produced in the one organ, will not be accompanied by some particular set of structural alterations in the other organs. There will be no necessary correlation of forms. Thus Paleontology must depend upon the empirical method. A fossil species that was obliged to change its May we not say then, that the deductive method elucidates this vexed question in physiology; while at the same time our argument collaterally exhibits the limits within which the deductive method is applicable. For while we see that this extremely general question may be satisfactorily dealt with deductively; the conclusion arrived at itself implies that the more special phenomena of organization cannot be so dealt with. There is yet another method of investigating the general truths of physiology—a method to which physiology already owes one luminous idea, but which is not at present formally recognized as a method. We refer to the comparison of physiological phenomena with social phenomena. The analogy between individual organisms and the social organism, is one that has from early days occasionally forced itself on the attention of the observant. And though modern science does not countenance those crude ideas of this analogy which have been from time to time expressed since the Greeks flourished; yet it tends to show that there is an analogy, and a remarkable one. While it is becoming clear that there are not those special parallelisms between the constituent parts of a man and those of a nation, which have been thought to exist; it is also becoming clear that the general principles of development and structure displayed in organized bodies are displayed in societies also. The fundamental characteristic both of societies and of living creatures, is, that they consist of mutually-dependent parts; and it would seem that this involves a community of various other characteristics. Those who are acquainted Meanwhile, if any such correspondence exists, it is clear that physiology and sociology will more or less interpret each other. Each affords its special facilities for inquiry. Relations of cause and effect clearly traceable in the social organism, may lead to the search for analogous ones in the individual organism; and may so elucidate what might else be inexplicable. Laws of growth and function disclosed by the pure physiologist, may occasionally give us the clue to certain social modifications otherwise difficult to understand. If they can do no more, the two sciences can at least exchange suggestions and confirmations; and this will be no small aid. The conception of "the physiological division of labour," which political economy has already supplied to physiology, is one of no small value. And probably it has others to give. In support of this opinion, we will now cite cases in which such aid is furnished. And in the first place, let us see whether the facts of social organization do not afford additional support to some of the doctrines set forth in the foregoing parts of this article. One of the propositions supported by evidence was that in animals the process of development is carried on, not by differentiations only, but by subordinate integrations. Now in the social organism we may see the same duality of process; and further, it is to be observed that the integrations are of the same three kinds. Thus we have integrations which arise from the simple growth of adjacent parts that perform like functions: as, for instance, the coalescence of Manchester with its calico-weaving suburbs. We have other integrations which arise when, out of several places producing a particular commodity, one monopolizes more Again, we endeavoured to show deductively, that the contrasts of parts first seen in all unfolding embryos, are consequent upon the contrasted circumstances to which such parts are exposed; that thus, adaptation of constitution to conditions is the principle which determines their primary changes; and that, possibly, if we include under the formula hereditarily-transmitted adaptations, all subsequent differentiations may be similarly determined. Well, we need not long contemplate the facts to see that some of the predominant social differentiations are brought about in an analogous way. As the members of an originally-homogeneous community multiply and spread, the gradual separation into sections which simultaneously takes place, manifestly depends on differences of local From confirmations thus furnished by sociology to physiology, let us now pass to a suggestion similarly furnished. A factory, or other producing establishment, or a town made up of such establishments, is an agency for elaborating some commodity consumed by society at large; and may be regarded as analogous to a gland or viscus in an individual organism. If we inquire what is the primitive mode in which one of these producing establishments grows up, we find it to be this. A single worker, who himself sells the produce of his labour, is the germ. His business increasing, he employs helpers—his sons or others; and having done this, he becomes a vendor not only of his own handiwork, but of that of others. A further increase of his business compels him to multiply his assistants, and his sale grows so rapid that he is obliged to confine himself to the process of selling: he ceases to be a producer, and becomes simply a channel through which the produce of others is conveyed to the public. Should his prosperity rise yet higher, he finds that he is unable to manage even the sale of his commodities, and has to employ others, pro Such parallelisms might be multiplied. And were it possible here to show in detail the close correspondence between the two kinds of organization, our case would be seen to have abundant support. But, as it is, these few illustrations will sufficiently justify the opinion that study of organized bodies may be indirectly furthered by study of the body politic. Hints may be expected, if nothing more. And thus we venture to think that the Inductive Method, usually alone employed by most physiologists, may not only derive important assistance from the Deductive Method, but may further be supplemented by the Sociological Method. FOOTNOTES: |