CHAPTER XXII.

Previous

Evaporation—Distribution of Vapour—Dew—Hoar-Frost—Fog—Region of Clouds—Forms of Clouds—Rain—Distribution of Rain—Quantity—Number of rainy Days in different Latitudes—Rainless Districts—Snow Crystals—Line of perpetual Snow—Limit of Winter Snow on the Plains—Sleet—Hail—Minuteness of the ultimate Particles of Matter—Their Densities and Forms—Their Action on Light—Colour of Bodies—Colour of the Atmosphere—Its Absorption and Reflection of Light—Mirage—Fog Images—CoronÆ and Halos—The Rainbow—Iris in Dewdrops—The Polarization of the Atmosphere—Atmospheric Electricity—Its Variations—Electricity of Fogs and Rain—Inductive Action of the Earth—Lightning—Thunder—Distribution of Thunder-Storms—Back Stroke—St. Elmo’s Fire—Phosphorescence—Aurora—Magnetism—Terrestrial Magnetism—The Dip—Magnetic Poles and Equator—Magnetic Intensity—Dynamic Equator—Declination—Magnetic Meridian—Lines of equal Variation—Horary Variations—Line of Alternate Horary Phenomena—Magnetic Storms—Coincidence of the Lines of equal Magnetic Intensity with Mountain Chains—Diamagnetism.

Moisture is evaporated in an invisible form from every part of the land and water, and at all temperatures, even from snow. Mr. Darwin mentions that the snow once entirely disappeared from the volcano of Aconcagua, in Chile, which is 23,300 feet high, from evaporation under a cloudless sky and an excessively dry air. The vapour rises and mixes with the atmosphere; and as its pressure and density diminish with the height above the surface of the earth, in consequence of gravitation, there is absolutely less moisture in the higher than in the lower regions of the air.

Seven-tenths of the atmosphere rests on the ocean; therefore the sea has the greatest influence in modifying climates and supplying the air with moisture. The evaporation is greatest between the tropics, from the excess of heat and the preponderance of the ocean, and its average quantity decreases from thence to the poles. Over the open sea, in all latitudes, the air is saturated with moisture; and in that over the coasts the quantity is very great, but it diminishes from the coasts to the interior of the continents. In the interior of the United States of North America, in the deserts of Asia, and in the interior of New Holland, the air is continually dry. There is scarcely any evaporation in the deserts of Africa, and the extreme heat, increased by the reverberation of the sand, opposes aqueous precipitations, so this land is doomed to perpetual sterility. The air over the steppes of Siberia is likewise nearly deprived of moisture. The greatest degree of dryness on record is that observed by M. Erman between the valleys of the Irtish and Obi, after a continued south-west wind and a temperature of 74° 7' of Fahrenheit.

Throughout all the countries in the northern hemisphere where observations have been made on the variations of atmospheric moisture, it appears that the air contains less vapour in January than in any other month of the year, yet at that time there is the greatest dampness; while in July the air is driest, and yet, on account of the heat, evaporation is the greatest: the reason is, that the heat in July dissolves the moisture and increases its elasticity or tension so much that it becomes insensible, whereas the cold of winter condenses it and renders it apparent.

The quantity of atmospheric moisture varies also with the hours of the day and night. In early morning the evaporation accumulates near the surface of the ground from the resistance of the air above it, but as the sun rises above the horizon the warm air descends and carries the vapour with it; so that the quantity near the ground is diminished till evening, when, on account of the lowness of the temperature, the ascending currents cease, and the air becomes loaded with vapour, and deposits its excess in the shape of dew or hoar-frost. For in the night the earth radiates part of the heat it received during the day through the atmosphere into space, and the temperature of the bodies on its surface sinks below that of the air; and by abstracting part of the heat which holds the humidity of the air in solution a deposition takes place. If the radiation be great, the dew is frozen and becomes hoar-frost, which is the ice of dew. Cloudy weather is unfavourable for the formation of dew by preventing the free radiation of heat, and actual contact is necessary for its formation, as it is never suspended in the air like fog. Dew falls in calm serene nights, but not on all substances indifferently; it wets them in proportion to their power of radiation, leaving those dry that radiate feebly or not at all. Dew is most abundant on coasts; in the interior of continents there is very little, except near lakes or rivers. When dew is congealed into hoar-frost it forms beautiful crystals, and the cold which produces it is very hurtful to vegetation, but a slight covering preserves plants from its effects.

When the atmosphere is so saturated with the vapour of water that it is precipitated in the air itself, a fog is the result, which consists of small globular particles of water. When dew is formed the earth is colder than the air in contact with it; but the case is exactly the contrary when fogs take place, the moist soil being warmer than the air. In countries where the soil is moist and warm, and the air damp and cold, thick and frequent fogs arise, as in England, where the coasts are washed by a sea of elevated temperature, and the excess of the heat of the Gulf-stream above the cold moist air is the cause of the perpetual fogs in Newfoundland.

Superior to all these phenomena, and at a considerable height above the earth, the air is very dry, because, under ordinary circumstances, the vapour ascends in a highly elastic and invisible state till it reaches a stratum of air of lower temperature, and then it is condensed into clouds. The region of clouds is a zone at a height varying from one to four miles above the surface of the earth, which is saturated with moisture. From friction and other causes the currents of air in the lower parts of that zone run horizontally on each other; and as they generally differ in moisture, temperature, and velocity, the colder condense the invisible vapour in the warmer, and make it apparent in the form of a cloud, which differs in no respect from a fog, except that one floats high in the air, while the other rests on the ground.

At moderate heights clouds consist of vapour, but at great elevations, where the cold is severe, they are an assemblage of minute crystals of ice. They assume three primary characters, from whence four subordinate forms are derived. The cirrus, or cat’s-tail of sailors, is the highest; it sometimes resembles a white brush, at other times it consists of horizontal bands of slender silvery filaments. To these all KÄmtz’s measurements assign a height of 19,500 feet, which is confirmed by their appearance being the same when seen from the tops of mountains or from the plains; consequently, they must consist of minute particles of ice or flakes of snow floating in the higher regions of the zone of clouds. The cirri for the most part arrange themselves in parallel bands which converge to opposite points in the horizon by the effects of perspective, and as they travel in their longitudinal direction they appear to be stationary. In the middle and higher latitudes of the northern hemisphere they tend from south-west to north-east, and at the equator from south to north. It is supposed that their parallel form arises from their being conductors between two foci of electricity, but, whatever the cause of this arrangement may be, it is very extensive. Among these clouds, which occasionally appear like fleecy cotton or wool, halos and parhelia are formed, which often precede a change of weather, announcing rain in summer, in winter frost and snow.

Cumuli, or summer-clouds, are rounded forms resting on a straight band in the horizon, and resemble mountains covered with snow. They are formed by ascending currents drawing the vapours into the higher regions of the atmosphere; sometimes they rise and cover the whole sky, and in the evening they frequently become more numerous and of deeper tint, presaging storm or rain.

The stratus is the third of the primary characters of clouds: it is a horizontal band, which forms at sunset and vanishes at sunrise. The subordinate varieties of clouds are combinations of these three principal classes.[139] The winds, the great agents in all atmospheric changes, carry the vapour to a distance, where it is often condensed on the tops of mountains into clouds which seem to be stationary, but which in reality are only maintained by a constant condensation of fresh vapour, which is carried off, as soon as formed, by the wind, and becomes invisible on entering warmer air.

When two masses of air of different temperature meet, the colder, by abstracting the heat which holds the moisture in solution, causes the particles to coalesce and form drops of water, which fall in the shape of rain by their gravitation. And when two strata of different temperature moving rapidly in contrary directions come into contact, a heavy fall of rain takes place; and as the quantity of aqueous vapour is most abundant in tropical regions, the drops are larger and the rain heavier than elsewhere.

Since heat is the cause of evaporation, rain is very unequally distributed, and with it decreases from the equator to the poles. From the island of Otaheite [Tahiti], in the Pacific, to Uleaborg, in Finland, the annual quantity of rain that falls decreases from 150 inches to 13. It is, however, more abundant in the New World than in the Old; 115 inches fall annually in tropical America, while in the Old World the annual fall is only 76 inches; so also in the temperate zone of the United States the annual quantity is 37 inches, while in the Old Continent it is but 313/4 inches.

Between the tropics the rains follow the sun: when he is north of the equator the rains prevail in the northern tropic; and when he is south of that line, in the southern: hence, one half of the year is extremely wet and the other half extremely dry; the change taking place near the equinoxes. Nevertheless, in countries situate between the 5th and 10th parallels of latitude, north and south, there are two rainy seasons, and two dry; one occurs when the sun passes the zenith in his progress to the nearest tropic, and the other at his return, but in the latter the rains are less violent and of shorter duration. Although the quantity of water which falls between the tropics in a month is greater than that of a whole year in Europe, yet the number of rainy days increases with the latitude, so that there are fewest where the quantity is greatest. Neither does it fall continually during the rainy season between the tropics, for the sky is generally clear at sunrise, it becomes cloudy at ten in the morning, at noon the rain begins to fall, and, after pouring for four or five hours, the clouds vanish at sunset, and not a drop falls in the night, so that a day of uninterrupted rain is very rare.

At sea, within the region of the trade-winds, it seldom rains, but in the narrow zone between them known as the Variables, in both the great oceans, it rains almost continually, attended by violent thunder and lightning.

Throughout the whole region where the monsoons prevail, it is not the sun, directly, but the winds, that regulate the periodical rains. That region extends from the eastern coasts of Africa and Madagascar across the Indian Ocean to the northern districts of Australia, and from the tropic of Capricorn to the face of the Himalaya, the interior of China, and even to Corea, inclusive. In these countries the western coasts are watered during the south-west monsoon, which prevails from April to October; and the eastern coasts are watered during the north-east monsoon, which blows from October to April. For example, the south-west wind condenses the vapour on the summit of the Ghauts, and violent rains fall daily on the coast of Malabar, while on the Coromandel coast the sky is serene. Exactly the contrary takes place during the north-east monsoon; it rains on the coast of Coromandel, while there is fair weather on the Malabar coast, and the table-land of the Deccan partakes of both. In the southern hemisphere the rainy season corresponds with the south-west monsoon, and the dry with the south-eastern.

Between the tropics it rains rarely during the night, and for months together not a drop falls; while in the temperate zone it often rains in the night, and rain falls at all seasons, though more abundantly in some than in others. It seldom rains in summer throughout the north of Africa, Madeira, the southern parts of Spain and Portugal, Sicily, southern Italy, all Greece, and the north-western part of Asia; but it falls copiously during the other seasons, especially in winter; consequently, that extensive region is called the province of winter rains.

The province of autumnal rains includes all Europe south of the Carpathians, western France, the delta of the Rhine, northern and western Scandinavia, and the British isles; throughout these countries more rain falls in autumn than in the other three seasons.

The province of summer rains comprises the eastern parts of France, the Netherlands (with the exception of the delta of the Rhine), the north of Switzerland, all Germany north of the Alps, the Carpathian mountains, Denmark, southern Scandinavia, all central Europe, and the countries beyond the Ural Mountains to the interior of Siberia, where showers are very rare in winter. In some places it rains almost perpetually, as in the island of Sitka, on the north-eastern coast of North America, where the year has sometimes passed with only 40 days of fair weather.

In the southern hemisphere, in Chile and the south-western part of America, winter is the rainy season, while on the eastern side of the Cordilleras the rains occur in summer. In Tierra del Fuego and the extreme point of the continent the two provinces meet, the periodical precipitation disappears, and it snows and rains throughout the year in torrents. At Cape Horn the quantity of rain which fell in 41 days measured nearly 154 inches. This excessive fall of rain occurs along the whole western shores of Patagonia, from the Straits of Magellan to Cape Tres Montes—a circumstance favoured by the high and rugged coasts, and the incessant westerly winds, which carry the vapour exhaled from the ocean to be precipitated here in the form of rain.

South Africa and Australia resemble each other in their rainy seasons, which in both countries take place in the winter months.

The annual amount of rain at the equator is 95 inches, which falls in 78 or 80 days, giving an average of 1·14 inch daily; while at St. Petersburg the annual amount is 17 inches, which falls in 169 days, the average being little more than the tenth of an inch daily.

The quantity of rain decreases in ascending from the plains to table-lands, especially if these be edged by mountains, because they precipitate the vapour before it arrives at the high plains. On the contrary, the quantity increases in ascending from plains to the tops or slopes of rugged mountains, on account of partial currents of air which condense the moisture into clouds.

The quantity of rain decreases on receding from the coasts into the interior of continents, because more vapour rises from the sea than from the land. The vapour from the Gulf-stream produces a greater quantity of rain and fog in the southern counties of England and Ireland than that which falls in the other parts of the islands.

The number of rainy days depends upon the direction of the wind. In Europe, if the wind always blew from the north-east, it would never rain, because it blows over a great extent of continent; whereas it would never cease raining were the wind always to blow from the south-west, because it would come loaded with vapour from the Atlantic. Hence, the greatest quantity of rain falls on the west coasts of Great Britain and Ireland, the coast of Scandinavia, the eastern Alps, and the centre of Portugal; in the two last it depends partly on the height and serrated form of the mountains. In western Europe it rains on twice as many days as in the eastern part; in Ireland there are three times as many rainy days as in Italy or Spain. In fact, on the western side of Ireland it rains on 208 days out of the 365. In England, France, and the north of Germany, there are from 152 to 155 rainy days in the year; the number decreases towards the interior of the continent, so that in Siberia it only rains on 60 days in the year.

There are enormous tracts of land on which rain never falls, and others where it rains at long intervals and in small quantities. The most extensive rainless district stretches from the borders of Morocco eastward through the desert of Africa, the low coasts of Arabia, Persia, and the desert province of Meekran, in Beloochistan, occupying a space of 80 degrees of longitude and 17 of latitude. The desert of Gobi, on the table-land of Tibet, and part of Mongolia, form another rainless province in the great continent; while, in the New World, the rainless districts are—the table-land of Mexico, part of Guatemala and California, and the western declivity of the Andes of Peru, towards the Pacific; in all occupying a surface equal to 5,500,000 square miles. The whole of the moisture is intercepted by the Andes of Peru; so that rain only occurs on the coast once or twice in a century—to the great terror of the inhabitants when it does fall. [The absence of rain is here compensated for by copious dews and mists, termed “llovisnas.”] South Africa, and Australia beyond the tropics, suffer from droughts, which are periodical in Australia; they recur in the countries of the eastern coasts in a period of 12 years, and continue 3 years. The Pampas of South America are also subject to droughts, though they do not appear to be periodical, nor do they continue more than a season.[140]

When the temperature of the air is near the freezing-point or below it, snow falls instead of rain; but the colder the air the less moisture does it contain, consequently the less snow falls, which is the reason of the comparatively small quantity on the high plains of the Himalaya and Andes. Snow sometimes assumes the form of grains; but is generally in regular crystals of great beauty, varying in form according to the degree of cold. Captain Scoresby, whose voyages in the Polar Seas afforded him constant opportunities of studying them, of which he so diligently availed himself, mentions five principal kinds of snow crystals, each of which had many varieties, in all amounting to 96. M. KÄmtz, however, is of opinion that there are several hundred.

Snow never falls between the tropics except on the tops of very high mountains. The mean elevation of the line of perpetual snow above the level of the sea in these hot regions is about 15,207 feet, from whence it decreases on both sides, and at last grazes the surface of the earth at the arctic and antarctic circles, subject however to various flexures. In the Andes, near Quito, the lowest level has an elevation of 15,795 feet, which is higher than the top of Mont Blanc; from thence it varies very irregularly, both to the north and south. In 18° of N. lat. it descends to 14,772 feet on the mountains of Mexico, while on the south it rises to 18,000 feet in some parts of the western Cordillera of the Bolivian Andes, owing to the extensive radiation from the subjacent plains and valleys. The line is at an altitude of 17,000 feet on the western Cordillera, whence it sinks to 13,800 feet at Copiapo, to 12,780 near Valparaiso; it is only 8300 in the southern end of the Chilian Andes, and 3390 in the Straits of Magellan. In lat. 31° N. the snow-line is at an elevation of 12,981 feet on the southern side of the Himalaya, and at 16,620 feet on the northern side, while Captain Gerard gives from 18,000 to 19,000 as its altitude on the mountains in the middle of the plain of Tartary. On Mont Blanc the line is at the height of 8500 feet, so that mountain is snow-clad for 7000 feet below its summit. In the Pyrenees it is 8184 feet, and at the island of Mageroe it is at 2160 feet above the Polar Ocean.

In the southern hemisphere, snow never falls on the low lands at the level of the sea north of the 48th parallel of latitude, on account of the predominance of water, whereas in the northern hemisphere it falls on the plains much nearer the equator, on account of the excess of land, but its limit is a curved line, on account of the alternations of land and water. In the western part of the great continent, the southern limit of the fall of snow on the low lands nearly coincides with the 30th parallel of north latitude, so that it includes all Europe. In the American continent it follows nearly the same line, extending through the southern parts of the United States. In China, snow falls at the level of the sea as far south as Canton; on the north-western coast of America, on the contrary, it does not fall at that level till about the 48th degree of N. lat.—these are the two extremes. Although Europe lies within the region of snow, the quantity that falls is very different in different places, increasing greatly from south to north. On an average, it snows only one day and a-half at Rome in the year, while at Petersburg there are 171 snowy days, but in that city the quantity of rain is to that of snow as 1000 to 384.

Sleet, which is formed of small particles of rounded hail, falls in squally weather in spring and autumn. True hail, when large, is pear-shaped, and consists of a nucleus of frozen snow coated with ice, and sometimes with alternate layers of snow and ice. Hailstones have often fallen as large as pigeons’ and even hens’ eggs. The masses and blocks of ice of great size, which have not unfrequently fallen, appear to have been formed of hailstones of large size frozen together. It appears to be formed in the high cold regions of the atmosphere, by the sudden condensation of vapour during the contention of opposing winds, and is intimately connected with electricity, since its fall is generally accompanied with thunder and lightning. Hail-showers are of short duration, exceedingly partial, and extend over a country in long narrow bands; one which took place on the 13th of July, 1788, began in the morning in the south of France, and reached Holland in a few hours, destroying a narrow line of country in its passage.

Local circumstances, no doubt, have a great influence on its formation; it occurs more frequently in countries at a little distance from mountains than in those close to them or farther off, and at all hours, but most frequently at the hotter time of the day. In the interior of Europe one half of the hail-storms take place in summer. Hail is very rare on the tropical plains, and often altogether unknown, though it frequently falls at heights of 1700 or 1800 feet above them. If the air is very cold throughout the greater part of the stratum through which hail falls, it is probably increased in size during its descent; and, on the contrary, large drops of rain which precede a thunder-storm are supposed to be hail melted in its passage through low warm air.

LIGHT.

We know nothing of the size of the ultimate particles of matter, except that they must be inconceivably small, since organized beings possessing life and exercising all its functions have been discovered so minute that a million of them would occupy less space than a grain of sand.

The air is only visible when in mass; the smallest globule of steam tells no more of its atoms than the ocean; the minutest grain of sand magnified appears like the fragment of a rock—no mechanical division can arrive at the indivisible. Although the ultimate atoms are beyond the power of vision, chemical compounds show that the divisibility of matter has a limit, and that the particles have different densities; moreover, the cleavage of crystalline substances gives reason to believe that they have different forms.[141] Thus, the reasoning power of man has come to the aid of his imperfect sense of vision, so that what were before imaginary things are now real beings with definite weights, and uniting by fixed laws. Though nothing had been known of their size, their effects were evident in the perceptions of sweet and sour, salt and bitter, and in the endless varieties of aroma in the food we eat and the liquors we drink. Moreover, their different densities are evident, as they arise by their buoyancy in the perfume of the rose, or sink by their weight in the heavy odour of mignonette. Every substance on earth is merely a temporary compound of the ultimate atoms, sooner or later to be resolved into its pristine elements, which are again to be combined in other forms, and according to other laws; so that literally there is nothing new under the sun, for there is no evidence of new matter being added to the earth, nor of that which exists being annihilated. Fire, which seems utterly to destroy, only resolves bodies into their elementary parts, to become what they were before, the support of animal or vegetable life, or to form new mineral compounds. It is to the action of these particles on the light of the sun that nature owes all its colours.

When a sunbeam passes through a glass prism[142] an oblong image of the sun is formed, consisting of colours in the following order—red, orange, yellow, green, blue, indigo, and violet. Sir John Herschel discovered lavender rays beyond the violet, and dark red rays exterior to the red, which are not so easily brought into evidence as the rest.

Even the most transparent substances absorb light; air, water, the purest crystal, stop some of the rays as they pass through them. A portion of the light is also reflected from the surface of all bodies; were it otherwise, they would be invisible. We should be unconscious of the presence and form of material substances beyond our reach except by the reflected rays,—

“The mist of light from whence they take their form
Hides what they are.”

As the same light does not come to all eyes, each person sees his own rainbow, the same flower by different rays. White substances reflect all the light, black substances absorb all but that which renders them visible, while coloured bodies decompose the light, absorb some of the colours, and reflect or transmit the rest. Thus, a violet absorbs all but the violet rays, which it reflects; a red flower only reflects the red and absorbs the rest; a yellow substance absorbs all but the yellow. In the same manner transparent substances, whether solid or fluid, absorb some colours and transmit others: thus, an emerald absorbs all but the green, a ruby all but the red; whereas a diamond does not decompose the light, but transmits every ray alike. Very few, however, of the colours, whether transmitted or reflected, are pure, but the substance takes its hue from the colour that predominates.

The atmosphere absorbs all the colours of the sun’s light except the blue, which is its true colour. In countries where the air is pure, the azure of the sky is deep; it is still more so at great elevations, where the density of the air is less; and its colour is most beautiful as it gradually softens the outlines of the mountains into extreme distance, or blends the sea with the sky. The air reflects and scatters part of the white solar beams, whence the brightness and cheerfulness of day; that property, together with the refractive power of the aqueous vapour, gives the roseate hue to the early morning, and the gold and scarlet tints to the closing day. Were it not for the reflective power of the air, the sun and moon would be like sharply-defined balls of fire in the profoundly black vault of the heavens, and dark night would instantly follow sunset. When the sun is 18 degrees below the horizon, the air, at the height of 30 miles, is still dense enough to reflect his rays, and divide the day from the night by the solar shades of twilight.

A considerable portion of the sun’s light is absorbed by the atmosphere: the loss increases with the density and obliquity of incidence and the density of the air. It is diminished 1300 times by the thickness of the air in the horizon, which enables us to look at the sun when setting without being dazzled.

Mirage, or the delusive appearance of water, so frequent in deserts, is owing to the reflection of light between two strata of air of different densities, occasioned by the radiation of heat from the arid soil. It is very common on the extensive plains in Asia and Africa, and especially in Upper Egypt; villages on small eminences above the plain appear as if they were built on islands in the middle of a lake when the dry sandy ground is heated by the mid-day sun. Sometimes objects appear double, and occasionally several images appear above one another, some direct and some inverted; this is particularly the case in high latitudes, where the Icy Sea cools the stratum of air resting on it.[143]

In the polar regions, or on the tops of mountains, when the sun is in the horizon the shadow of a person is sometimes thrown on an opposite cloud or mist, the head being surrounded by concentric coloured rings or circles, the number varying from one to five; Captain Scoresby saw four of these rings, on one occasion, round the shadow of his head, as he stood between the sun and a thick low fog: the first ring consisted of concentric bands of white, yellow, red, and purple; the second consisted of concentric bands of blue, green, yellow, red, and purple; the third of green, white, yellowish white, red, and purple; and in the fourth were greenish white, deeper on the edges. These appearances, called glories, or fog-images, and the coronÆ or small concentric coloured circles which surround the sun or moon when partly obscured by thin white clouds, are owing to the refraction of the light in the aqueous particles of the cloud or fog. The colours in the concentric bands of the coronÆ, however, differ from the foregoing; that nearest the sun is of deep blue, white, and red; the circle exterior to that consists of purple, blue, green, pale yellow, and red; but the series is very rarely complete.

Halos, which surround the sun in large circles, or a complicated combination of circles, are, on the contrary, supposed to be produced by the light falling on minute crystals of ice suspended in the atmosphere; they are particularly brilliant and frequent in high latitudes. It is scarcely possible to give an idea of these beautiful and singular objects. Sometimes a large coloured circle surrounds the sun or passes through his centre, which is occasionally touched or cut by segments of others. One seen at St. Petersburg on the 29th of June, 1790, consisted of four coloured circles of different sizes intersecting each other, which were either cut or touched by segments of eight others, and at the points of intersection mock suns or parhelia appeared. The sky is very hazy on these occasions. Mock suns, without circles and halos, are by no means uncommon round both sun and moon, but seldom of that complicated kind. They are situate between the observer and the sun, whereas the rainbow is always in that part of the sky opposite the sun, because it is produced by refraction and reflection of the sun’s rays in the drops of rain; and when the light is intense and the rain abundant, there are two concentric bows, the prismatic colour of the innermost of which are the most vivid, the violet being within and the red outside: sometimes the inner edge exhibits a repetition of colours in fine fringes, in which red and green predominate. The colours are reversed in the exterior bow, the violet being outside and the red on the inner edge. Besides these two principal and most common bows, supernumerary rainbows occasionally appear within the interior bow, generally green and violet, though there are sometimes more or less perfect repetitions of all the colours. In squally weather a rainbow is sometimes seen on a blue sky when rain is falling, but it is generally on clouds; it is constantly seen when the sun shines on the fine drops of fountains and cascades. As the light of the moon is feeble, lunar rainbows are rare, and, for the most part, colourless. In the early morning, when the sun throws his slanting beams across the fields, a miniature bow, with all its vivid colours, may be seen in each dewdrop as it hangs on the points of the bending grass.

Light is said to be polarized when, after having been once refracted or reflected, it is rendered incapable of being again refracted or reflected at certain angles. For example, if a crystal of brown tourmaline be cut longitudinally into thin slices, and polished, the light of a candle may be seen through a slice as if it were glass. But if one of these slices be held perpendicularly between the eye and the candle, and a second slice be turned round between the eye and the other plate of tourmaline, the image of the candle will vanish and come into view at every quarter-revolution of the plate, varying through all degrees of brightness down to total or almost total evanescence, and then increasing again by the same degrees as it had decreased. Thus, the light, in passing through the first plate of tourmaline, is said to be polarized because it has been rendered incapable of passing through the second piece of tourmaline in certain positions.

A ray of light acquires the same property if it be reflected from a pane of plate-glass at an angle of 57 degrees; it is by that rendered incapable of being reflected by another pane of plate-glass in certain definite positions, for the image of the light vanishes and reappears alternately at every quarter-revolution of the second pane.

If a thin plate of mica be interposed when the image of the candle has vanished, the darkness will instantly disappear, and a succession of the most gorgeous colours will come into view, varying with every inclination of the mica, from the richest reds to the most vivid greens, blues, and purples. The most splendid colours arranged in symmetrical forms are exhibited by thin plates of an infinite variety of substances besides mica. They display some of the most beautiful objects in nature, and show differences otherwise inappreciable in the arrangement of the molecules of crystalline bodies.[144]

M. Arago discovered that the light of the sun is polarized by the reflection of the atmosphere, but not equally so on every part of the sky; the polarization is least in the vicinity of the sun, and greatest at 90° from him, for there his light is reflected at an angle of 45°, which is the polarizing angle for air.[145] There are three points in the sky where the light is not polarized: one of these neutral points, discovered by M. Arago, is 18° 30' above the point diametrically opposite to the sun when he is in the horizon; the second neutral point, discovered by M. Babinet, is 18° 30' above the sun when he is rising or setting; and the third, discovered by Sir David Brewster, is 15° or 16° below the sun. These points vary with the height of the sun, and the two latter rise and coincide in his centre when he is in the zenith.[146]

Now, the portion of polarized light sent to the eye from any part of a clear sky is in a plane passing through that point, the eye of the observer, and the centre of the sun. If that point be the north pole of the heavens, it is clear that, as the sun moves in his diurnal course, the plane will move with him as an hour circle, and may be used as a dial to determine the hour of the day. Professor Wheatstone, by whom that beautiful application of the polarization of the atmosphere has been made, has constructed a clock, of very simple form, which shows the time of day with great accuracy, and which has many advantages over a sun-dial.

ELECTRICITY.

Electricity pervades the earth, the air, and all substances, without giving any visible sign of its existence when in a latent state, but, when elicited, it exhibits forces capable of producing the most sudden, violent, and irresistible effects. It is roused from its dormant state by every disturbance in the chemical, mechanical, or calorific condition of matter, and then experience shows that bodies in one electric state repel, and in another they attract each other. Probably their mutual attraction and repulsion arise from the redundancy and defect of electricity; in the first case they are said to be positively, in the latter negatively electric.[147] When they have different kinds of electricity they attract each other, and, when not opposed, the electricity coalesces with great rapidity, producing the flash, explosion, and shock, and that with the more violence the greater the tension or pressure of the electricity on the surrounding air which resists its escape. Equilibrium is then restored, and the electricity remains latent till called forth by a new exciting cause. The electrical state of substances is easily disturbed, for, without contact, positive electricity tends to produce negative electricity in a body near it, and vice versÂ: the latter is then said to be electric by induction.

The electricity of the atmosphere arises from evaporation, and the chemical changes that are in perpetual progress on the globe; no electricity, however, is developed by the evaporation of pure water, but it arises abundantly from water containing matter susceptible of chemical action during the evaporation; consequently, the ocean is one of the greatest sources of atmospheric electricity; combustion is another, and a large portion arises from vegetation. The air, when pure, is almost always positively electric; but as the chemical changes on the earth sometimes produce positive and sometimes negative electricity, it is subject to great local variations; a passing cloud or a puff of wind produces a change, and a distant storm renders it negative for the time, but the earth is always in a negative state. The quantity of electricity varies with the hours of the day and the seasons; it is more powerful in the day than in the night, in winter than in summer, and it diminishes from the equator to the poles. It thunders daily in many places, in others never, as on the east coast of Peru and in the Arctic regions, except where there are violent volcanic explosions, which always generate electricity, as in Iceland. Wherever there are no trees or high objects to conduct it to the ground, the quantity of positive electricity increases with the height above the surface of the earth. Violent thunder-storms take place on the tops of the Andes and Himalaya mountains, at heights of 26,650 feet above the plains.

Electricity becomes very strong when dew is deposited, and in some cases it is strongly developed in fogs. Mr. Cross found it so powerful on one occasion, that it was dangerous to approach the apparatus for measuring its intensity. A continued succession of explosions lasted nearly five hours, and the stream of fire between the receiving-ball and the atmospheric conductor was too vivid to look at. M. Peltier has found that the common fogs arising from the mere condensation of the moisture in the air are neutral, but that others, which are produced by exhalations from the earth, are sometimes positive, sometimes negative; the subject, however, requires further investigation.

Though in long-continued mild rains there are no traces of electricity, yet, when rain or snow falls from the higher regions of the atmosphere, it is more or less developed, sometimes positive, sometimes negative, depending a good deal on the direction of the wind. The atmosphere being positively electric, negative rain is supposed to arise from the evaporation of the drops in passing through dry air; the vapour carries off the positive electricity and leaves the drop in a negative state—a circumstance which seems to be confirmed by the electricity of cascades, near which there always is more or less negative electricity; the positive flows into the earth, while the other remains united to the drops of the cascade.

The inductive action of the earth upon the clouds, and of the different strata of clouds on each other, produces great variations in their electrical state. If rain falls from the lowermost of two strata of positively electrical clouds, the inductive action of the earth renders the under surface positive and the upper negative, and the rain is positive. By-and-bye the under surface of the cloud and the earth become neutral; and after a time the lower cloud becomes charged with negative electricity by the induction of the upper strata, and the rain is then negatively electric. Clouds are very differently charged; grey clouds have negative—red, white, and orange clouds positive electricity; and when clouds differently charged meet, an explosion takes place. When the sky is clear and the air calm and warm, a succession of small white fleecy clouds rising rapidly above the horizon, and flying swiftly in the very high regions of the atmosphere, is a certain presage of a thunder-storm.

Electricity of each kind is probably elicited by the friction of currents of air, or masses of clouds moving rapidly in different directions, as in thunder-storms, when small white clouds are seen flying rapidly over the black mass; yet the quick and irregular motion of clouds in storms is probably owing to the strong electrical attraction and repulsion among themselves, though both may be concerned in these hostile encounters. When two clouds differently charged by the sudden condensation of vapour, and driven by contending winds, approach within a certain distance, the thickness of the coating of electricity increases on the two adjacent sides, and, when the accumulation becomes so great as to overcome the coercive pressure of the atmosphere between them, a discharge takes place which occasions a flash of lightning. The actual quantity of electricity in any part of a cloud is very small. The intensity of the flash depends upon the extent of surface occupied by the electricity, which acquires its intensity by its instantaneous condensation.

The air, being a non-conductor, does not convey the electricity from the clouds to the earth, but it acquires from them an opposite electricity, and when the tension is very great the force of the electricity becomes irresistible, and an interchange takes place between the clouds and the earth, but the motion of the lightning is so rapid that it is difficult to ascertain when it goes from the clouds to the earth, or from the earth to the clouds, though there is no doubt it does both: explosions have burst from the ground, and people have been killed by them.

When the air is highly rarified by heat, its coercive power is diminished, so that the electricity escapes from the clouds in the form of diffuse lambent sheets of lightning without thunder or rain, frequently seen in warm summer evenings, sometimes even near the zenith, and quite different from that sheet-lightning at the horizon which is in general only the reflection of the forked lightning of a distant storm. When the quantity of electricity developed by the sudden condensation of vapour is very great, the lightning is always forked; its zigzag form is occasioned by the unequal conducting power of the air, by which it is sometimes divided into several branches. The author once saw a flash divide into four parallel streams—a very uncommon occurrence. Occasionally, in very great storms, the lightning sends off lateral branches. It often appears as a globe of fire moving so slowly that it is visible for several seconds, while the flashes of forked lightning do not last the millionth part of a second. Professor Wheatstone, who has measured the velocity of lightning by experiments of great ingenuity, found that it far surpasses the velocity of light, and would encircle the globe in the twinkling of an eye. This inconceivable velocity is beautifully exemplified in the electric telegraph, by which the most violent and terrific agent in nature is rendered obedient to man, and conveys his thoughts as rapidly as they are formed. The colour of lightning is generally a dazzling white or blue, though in highly rarified air it is rose-colour or violet.

The sudden compression of the air during the passage of lightning must convert a great quantity of latent into sensible heat, for heat in a latent or insensible state exists in all bodies independent of their temperature. Heat is absorbed and becomes insensible to the thermometer when solids become liquids, and when liquids are changed to vapour; and it again becomes sensible when vapour is condensed, and when liquids become solid. When water freezes, all the heat that kept it liquid is given out; and when ice melts, it absorbs heat from everything near it. The air is full of heat in a latent state, whatever its temperature may be, but it can be squeezed out by sudden compression so as to kindle tinder. Every aËrial wave, every sound, every word spoken must set free an infinitesimal quantity of heat; so everything that tends to rarify the air must cause it to absorb a proportional quantity.

The rolling noise of thunder is probably owing to the difference between the velocity of lightning and that of sound. Thunder may be regarded as originating in every point of a flash of lightning at the same instant; and as sound takes a considerable time to travel, it will arrive first from the nearest point; and if the flash run in a direct line from a person, the noise will come later and later from the remote points of its path, in a continued roar. Should the direction of the flash be inclined, the succession of sounds will be more rapid and intense; and if the lightning describe a circular course above a person, the sound will arrive at the same instant from every point with a stunning crash.[148]

In passing to the earth, lightning follows the best conductors—metals by preference, then damp substances—which is the reason why men and animals are so often struck. If it meets with a bad conductor, it shivers it to pieces and scatters the fragments to a considerable distance. A powerful flash scatters gunpowder, while a feeble one ignites it; the hardest trees are split and torn to shreds; when a tree is struck, the heat of the flash converts the sap into steam, the expansive force of which shivers the tree. The surface of rocks is vitrified by it; and when it falls on a sandy soil, its course underground is marked by vitrified tubes many feet long.

Thunder-storms occur daily within the region of the Variables, which is also the region of storms: in countries under the influence of the monsoons they are tremendous at the changes of these periodical winds; where the trade-winds prevail they are hardly known, though electrical discharges are frequent at their limits. In Greece and Italy there are about 40 thunder-storms annually, which occur in spring and autumn, while north of the Alps they chiefly take place in summer. There are about 24 in the year on the coasts of the Atlantic and in Germany, but they are much more frequent among mountains than on plains. In the interior of the old continent they rarely occur in winter, and three-fourths of the number happen in summer. They are of such rare occurrence in high latitudes, that in a residence of 6 years in Greenland Sir Charles Geiseke only heard it thunder once.

Some storms arise from the contention of opposite currents in the air; others are occasioned by currents of warm air ascending from the earth, which are suddenly condensed as they enter the upper regions of the atmosphere, and, as this sometimes happens at the hottest hour of the day, these storms are periodical for many successive days, recurring always at the same hour. Sometimes they extend over a great expanse of country, and the lightning darts from all points of the compass. A person may be killed at the distance of 20 miles from the explosion by the back stroke. If the two extremities of a highly-charged cloud dip towards the earth, they will repel the electricity of the earth, if it be of the same kind with their own, and will attract the other kind; and if a discharge should take place at one end of the cloud, the equilibrium will instantly be restored by a flash from that part of the earth which is under the other, sufficiently strong to destroy life, and it is the most dangerous, though never so strong as the direct stroke.

When thunder-clouds are very low, there is frequently no lightning; the electricity produced by induction is so powerful that it escapes from pointed objects in the shape of flame without heat, known as St. Elmo’s fire. These flames are not unfrequently seen at the topmasts of ships and the extremities of their yard-arms. Bodies between the clouds and earth may be electrized by induction, and their electricity will be seen in the form of flame, as showers of phosphorescent snow.

Phosphorescence is ascribed to electricity; various substances emit light when decaying, as fish and wood. Although many marine animals are phosphorescent, yet the luminous appearance which the sea often assumes is not always to be attributed to them, but probably to the decaying animal matter it contains.

The aurora is decidedly an electrical phenomenon. It generally appears soon after sunset in the form of a luminous arch stretching more or less from east to west, the most elevated point being always in the magnetic meridian of the place of the observer: across the arch the coruscations are rapid, vivid, and of various colours, darting like lightning to the zenith, and at the same time flitting laterally with incessant velocity. The brightness of the rays varies in an instant: they sometimes surpass the splendour of stars of the first magnitude, and often exhibit colours of admirable transparency, blood-red at the base, emerald-green in the middle, and clear yellow towards their extremity. Sometimes one, and sometimes a quick succession of luminous currents run from one end of the arch or bow to the other, so that the rays rapidly increase in brightness; but it is impossible to say whether the coruscations themselves are actually affected by a horizontal motion of translation, or whether the more vivid light is conveyed from ray to ray. The rays occasionally dart far past the zenith, vanish, suddenly reappear, and, being joined by others from the arch, form a magnificent corona or immense dome of light. The segment of the sky below the arch is quite black, as if formed by dense clouds; yet M. Struve is said to have seen stars in it, consequently the blackness must be from contrast. The lower edge of the arch is evenly defined; its upper margin is fringed by the coruscations, their convergence towards the north, and that of the arch itself, being probably an effect of perspective.

Either the aurora must be high above the earth, or its coruscations must be very extensive, since the same display is visible at places wide asunder. It has frequently been seen in North America and all over the north of Europe at the same time, sometimes even as far south as Italy, yet Sir Edward Parry certainly saw a ray dart from it to the ground near him. M. Struve, Admiral Wrangel, and others who have had many opportunities of seeing the aurora in high latitudes, assign a very moderate elevation to it. The arch probably passes through the magnetic pole; hence, in the north of Greenland it lies south of the observer, and Sir Edward Parry saw it to the south in Melville Island, which is in 70° N. lat.; consequently it must appear in the zenith in some places. Dr. Faraday conjectures that the electric equilibrium of the earth is restored by the aurora conveying the electricity from the poles to the equator, for it appears in the high southern latitudes, as well as in the northern; and the Rev. G. Fisher has lately suggested, that, as the principal display of the aurora takes place at or near the margin of the polar ice, the electricity may be conveyed by the conducting power of the frozen particles which abound in the air in these latitudes, and which, being rendered fitfully luminous by the passage of the electricity, produce the arch and the ever-varying flashes of the aurora.

The aurora has a powerful influence on the magnetic needle, even in places where the display is not seen. Its vibrations seem to be slower or quicker according as the auroral light is quiescent or in motion, and the disturbances of the magnetic needle and the auroral displays were simultaneous at Toronto, in Canada, on 13 days out of 24, the remaining days having been clouded; and contemporaneous observations show that on these 13 days there were also magnetic disturbances at Prague and at Van Diemen’s Land, so that the “occurrence of aurora at Toronto on these occasions may be viewed as a local manifestation connected with magnetic effects, which, whatever may have been their origin, probably prevailed on the same day over the whole surface of the globe.”[149]

MAGNETISM.

Magnetism is one of those unseen imponderable existences which, like electricity and heat, are known only by their effects. It is certainly identical with electricity, for, although it never comes naturally into evidence, magnets can be made to exhibit all the phenomena of electrical machines.

Terrestrial magnetism, which pervades the whole earth, is extremely complicated; it varies both with regard to space and time, and, probably, depends upon the heat of the sun, upon his motion in the ecliptic, which produces changes of temperature, on galvanic currents circulating through the surface of the globe, and possibly on the earth’s rotatory motion.

The distribution of terrestrial magnetism is determined by the declination-needle, or mariner’s compass, and the dipping-needle; they consist of magnetized needles or bars of steel, so suspended that the declination-needle revolves in a horizontal direction, and the dipping-needle moves in a plane perpendicular to the horizon. The north end of the declination-needle or magnet points to the north, and the south end to the south, and it only remains at rest when in that position. The direction of the needle is the magnetic meridian of the place of observation.

The north end of the dipping-needle bends or dips below the horizon in the northern hemisphere, and the south end bends or dips beneath it in the southern hemisphere, and between the two there is a line which encircles the whole earth, where the dipping-needle remains horizontal. That line, which is the magnetic equator or line of no dip, crosses the terrestrial equator in several places, extending alternately on each side, but never deviating more than 12 degrees from it. The deviation is greater in that part of the Pacific where there are most islands, and it is greatest both to the south and north in traversing the continents of Africa and America; thus, it appears that the configuration of the land and water has an influence on terrestrial magnetism. North and south of the magnetic equator the needle dips more and more, till at last it becomes perpendicular to the horizon in two points, or rather linear spaces, known as the north and south magnetic poles, which are quite distinct from the poles of the earth’s rotation. One, whose position was determined by Captain Ross, is in 70° N. lat. and 97° W. long., while that in the southern hemisphere, determined by Sir James Ross, in the interior of Victoria Island, is in 70° S. lat. and 162° E. long. Lines of equal dip are such as may be drawn on a globe through all those places where the dipping-needle makes the same angle with the horizon. The angle of the dip is not always the same: according to Colonel Sabine, who is the highest authority on this subject, it has been decreasing in the northern hemisphere, for the last fifty years, at the rate of three minutes annually: it is also subject to variations of short periods, and it seems to be affected by shocks of earthquakes, even when very distant.

The intensity of the magnetic force is as variable and even more complicated than the other magnetic phenomena: it is measured by the number of vibrations made by the declination-needle in a given time. It is very different in different parts of the earth, but there are four points in which the intensity is greater than anywhere else. Two of these are in the northern and two in the southern hemisphere; they neither coincide with the poles of the earth’s rotation nor with the magnetic poles, nor are they all of equal intensity.

One of these foci of maximum magnetic intensity is situate in North America, south-west from Hudson’s Bay; another is in northern Siberia in 120° E. long. In the southern hemisphere, one of the points of maximum magnetic intensity is in the South Atlantic in 20° S. lat. and 324° E. long., and the other is situate in 60° S. lat. and 131° 20' E. long.[150] In consequence of the unequal intensity of the force in these 4 foci, the decrease in magnetic power from them towards the equator is extremely irregular, so that the dynamic equator, which is a line supposed to be drawn through all the points on the earth where the intensity is the least, encircles the globe in a waving line, which neither coincides with the geographical nor magnetic equator; it forms the division between the magnetic intensities in the two hemispheres. Lines drawn on a globe through all the points where the magnetic intensity is the same are so complicated that it is scarcely possible to convey an idea of them in words. They form a series of ovals round each of the foci of maximum force, then a figure of 8 in each hemisphere having a focus and its ovals in each loop, then they open into tortuous lines which encompass the globe, but which become less so as they approach the dynamic equator. The complication is increased by the foci in the two hemispheres being unsymmetrically placed with regard to one another, as well as by the difference in their intensities.

The declination or horizontal needle only remains at rest when in a magnetic meridian, that is, when it points to the north and south magnetic poles. The magnetic meridians coincide with the geographical meridians in some places, and in these the magnet points to the true north and south, that is, to the poles of the earth’s rotation. But if it be carried successively to different longitudes, it will deviate sometimes to the east, sometimes to the west of the true north. Imaginary lines on the globe, passing through all places where the magnet points to the poles of the earth’s rotation, are lines of no variation; and lines passing through all places where the magnet deviates by an equal quantity from the geographical meridians are lines of equal variation; they are also very irregular, and form two closed systems or loops,—that is, they surround two points, one in northern Siberia and another in the Pacific, nearly in the meridian of the Pitcairn Islands and the Marquesas.[151]

The whole magnetic system is perpetually undergoing secular and periodical changes, which are so irregular and complicated that half a century is sufficient to alter the form and position of all the lines that have been mentioned. The foci of magnetic intensity, and the whole system represented by the magnetic lines, are moving along the two hemispheres in opposite directions; those in the northern hemisphere are going from west to east, and those in the southern from east to west; and as the foci of maximum intensity move with different velocities, the forms, as well as the places, of the curves are slowly, yet continually, changing. The weaker magnetic focus in the northern hemisphere moved through 50 degrees of longitude in 250 years.

The declination is subject to periodic variations depending upon the position of the moon, and to annual variations arising from the motion of the sun in the ecliptic, as well as to horary variations corresponding to changes of temperature from the diurnal rotation of the earth.

Throughout the middle latitudes of the northern hemisphere the north end of the magnet has a mean motion from east to west from eight in the morning till half-past one, it then moves to the east till evening, after which it makes another excursion to the west, and returns again to its original position at eight in the morning. The extent of its variation is greater in the day than in the night, in summer than in winter. It decreases from the middle latitudes in Europe, where it is 13 or 14 minutes, to the equator, where it is only 3 or 4; but at the equator the variations are performed with extreme regularity. The horary motions of the south end of the magnet in the southern hemisphere are accomplished in an exactly opposite direction. Between these two magnetic hemispheres there is a line passing through an infinity of places, and very nearly coinciding with the line of minimum magnetic intensity, where the horary phenomena of both hemispheres are combined, each predominating alternately at opposite seasons. At St. Helena, which is one of the places in question, and nearly on the line of minimum intensity, the horary motion of the north end of the magnet corresponds in direction during one half of the year with the movement in the northern hemisphere, and in the other half of the year the direction at the same hours corresponds with that in the southern hemisphere, the passage from the one to the other being at the equinoxes, when the diurnal variations at the usual hours partake more or less of the characteristics of both on different days.[152]

It thus appears that there are six points on the earth peculiarly remarkable for magnetic phenomena, all of which are distinct from one another, and from the poles of the earth’s rotation—namely, two magnetic poles where the dipping-needle makes an angle of 90 degrees with the horizon. The magnetic equator corresponds with these in every point of which the angle of the dip is zero: it encircles the earth, and intersects the terrestrial equator, but does not coincide with it. The other four points are the foci of maximum magnetic intensity, and to them the dynamical equator or line of minimum magnetic intensity corresponds, also surrounding the earth in an irregular line, but which coincides with neither the terrestrial nor magnetic equator. Besides these, and either partly or nearly coinciding with the line of minimum intensity, is that line which is supposed to pass through all places where the horary variations of the magnet partake of the phenomena of each hemisphere alternately.

The earth’s magnetism is subject to vast unaccountable commotions or storms of immense extent, which occur at irregular intervals, and are of short duration. In 1818, a magnetic storm, shown by a violent agitation of the needle, took place at the same time over 47 degrees of longitude, extending through all the countries from Paris to Kasan; and on the 25th of September, 1841, one of these storms was simultaneously observed at Toronto in North America, at the Cape of Good Hope, Prague in Europe, at Macao in China, and there is reason to believe that it extended to Van Diemen’s Land. Similar storms have happened simultaneously in Sicily and at Upsala in Sweden; others of less extent and shorter periods more frequently occur, and are, like the greater storms, not to be attributed to any known cause.

M. Necker de Saussure has traced a marked coincidence between the prevailing direction of the stratified masses of the mountain chains and that of the curves of equal magnetic intensity. The coincidence is perfect in the Ural chain, for there the lines of force tend north and south; and they do not deviate much from the stratification in the great plains of European Russia. There is every reason to believe that a coincidence takes place in the Scandinavian mountains, for a line of equal magnetic intensity passes parallel to the Norwegian coast. In Scotland, a line almost coincides with the Grampians; and as it becomes less northerly before reaching Portugal and Spain, it is there also in singular coincidence with the sierras on the table-land; the Pyrenees, however, form an exception to the law. A magnetic line follows the break of the chain of the Alps with great precision. The intersection of two upheavals makes these mountains alter their direction from S.W. and N.E. to E. nearly, and near to that change the magnetic line takes a similar bend, and coincides with the Caucasus, Taurus, Hindoo-Coosh, Himalaya, and Chinese mountains, after which it again tends to the north, and follows the Yablonia chain to Behring’s Straits.

In Africa, the lines of equal magnetic force coincide with the Komri, and with the lofty sea-coast range which unites the mountains of Abyssinia with those at the Cape of Good Hope. Throughout North America the lines of equal force coincide with the Alleghanies, and on the coast of the Pacific they take the direction of the Rocky Mountains. In Mexico, the stratified rocks are parallel to the mountains of Anahuac, which is the same with the direction of the magnetic curves, and a similar coincidence takes place in the Parima ranges, and in the coast-chain of Venezuela. The Andes, and the lines of equal magnetic intensity, are completely discordant, for they cross one another; but lines of equal magnetic force stretch from the southern promontories of America and Asia to the mountains of Victoria Land.

There is strong presumptive evidence of the influence of the electric and magnetic currents on the formation and direction of the mountain masses and mineral veins, but their slow persevering action on the ultimate atoms of matter has been placed beyond doubt by the formation of rubies and other gems, as well as various other mineral substances, by voltaic electricity.

The existence of electric currents on the surface of the earth has been deduced from terrestrial magnetism, and from the connection between the diurnal variations of the magnet and the apparent motion of the sun; also from the electro-magnetic properties of metalliferous veins, and from atmospheric electricity, which is continually passing between the air and the earth.

Dr. Faraday’s brilliant discoveries have changed the received opinions with regard to the magnetic properties of matter. Although all bodies are magnetic, they show that it assumes a totally different form in different substances. For example, if a bar of iron be freely suspended between the poles of an electro-magnet, or very powerful horse-shoe magnet, it will be attracted by both poles, and will rest in the direction between them—that is, on the line of force. But if a bar of bismuth be suspended in the same manner, it will be repelled by both poles, and will assume a direction at right angles to that which the iron took, and thus the same force, whether electric or magnetic, produces opposite effects upon these two metals. Substances affected after the manner of iron are magnetic—those affected after the manner of bismuth are said to be diamagnetic. All substances come under one or other of these two classes: the diamagnetic are infinitely more abundant than the magnetic; almost all bodies on earth belong to that class. Many of the metals, acids, oils, sugar, starch, animal matter, flame, and all the gases, whether light or heavy, have the diamagnetic property less or more, but oxygen less than any other, and that is the reason why atmospheric air is the most feebly diamagnetic of all substances at its natural temperature; for when very hot it becomes more diamagnetic, and if extremely cold it takes a place among the magnetic class. Important results with regard to the magnetic state of the globe will undoubtedly be deduced from this new property of matter, and Dr. Faraday’s observations on that subject show that he is not without such anticipations.

“When we consider the magnetic condition of the earth as a whole, without reference to its possible relation to the sun, and reflect upon the enormous amount of diamagnetic matter which forms its crust; and when we remember that magnetic curves of a certain amount of force, universal in their presence, are passing through these matters, and keeping them constantly in a state of tension, and therefore of action, we cannot doubt that some great purpose, of utility to the system and to us its inhabitants, is fulfilled by it. If the sun have anything to do with the magnetism of the globe, then it is possible that part of this effect may be due to the action of the light that comes to us from that body; and in that view the air seems most strikingly placed round our sphere, investing it with a transparent diamagnetic, which, therefore, is permeable to his rays, and, at the same time, moving with great velocity across them. Such conditions seem to suggest the possibility of magnetism being thence generated.”

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page