Nature and Character of Mineral Veins—Metalliferous Deposits—Mines—Their Drainage and Ventilation—Their Depth—Diffusion of the Metals—Gold—Silver—Lead—British Mines—Quicksilver—Copper—Tin—Cornish Mines—Coal—Iron—Most abundant in the Temperate Zones, especially in the Northern—European and British Iron and Coal—American Iron and Coal—Arsenic and other Metals—Salt—Sulphur—Diffusion of the Gems. The tumultuous and sudden action of the volcano and the earthquake on the great masses of the earth is in strong contrast with the calm, silent operations on the minute atoms of matter by which Nature seems to have filled the fissures in the rocks with her precious gifts of metals and minerals, sought for by man from the earliest ages to the present day. Tubal-cain was “the instructor of every artificer in brass and iron.” Gold was among the first luxuries, and even in our own country, from time immemorial, strangers came from afar to carry off the produce of the Cornish mines. The ancients scarcely were acquainted with a third of the thirty-five metals now known, and the metallic bases of the alkalis only date from the time of Sir Humphry Davy, having formed a remarkable part of his brilliant discoveries. In the downward zigzag course of a vein, the bending of the strata upwards on one side and downwards on the other, and the chemical changes almost always observed on the adjacent rocks, veins bear a strong analogy to the course and effects of a very powerful electrical discharge. Veins have been filled with substances foreign to them, which have probably been disseminated in atoms in the adjacent rocks or by sublimation. Nothing can be more certain than that the minute particles of matter are constantly in motion from the action of heat, mutual attraction, and electricity. Prismatic crystals of salts of zinc are changed in a few seconds into crystals of a totally different form by the heat of the sun: casts of shells are found in rocks, from which the animal matter has been removed, and its place supplied by mineral matter; and the excavations made in rocks diminish sensibly in size in a short time if the rock be soft, and in a longer time when it is hard—circumstances which show an intestine motion of the particles, not only in their relative positions, but in space, which there is every reason to believe is owing to electricity—a power which, if not the sole agent, must at least have co-operated essentially in the formation and filling of mineral veins. The magnetism of the earth is presumed to be owing to electrical currents circulating through its surface in a direction at Sir Henry de la Beche conceives that the continued expansion and elevation of an intensely heated mass from below would occasion numerous vertical fissures through the superincumbent strata, within which some mineral matters may have been drawn up by sublimation, and others deposited in them when held in solution by ascending and descending streams of water; but even on this hypothesis the direction of the rents and the deposition of the minerals would be influenced by the electrical currents. But if veins were filled from below, the richest veins would be lowest, which is not the case in Cornwall, Mexico, or Peru. When veins cross one another, the traversed veins are presumed to be of prior formation to those traversing, because the latter are dislocated and often heaved out of their course at the The metalliferous deposits are peculiar to particular rocks: gold and tin are most plentiful in granite and the rocks lying immediately above it; copper is deposited in various slate formations resting on the preceding, and in the trias; lead is found in the mountain-limestone system, and is rare where iron and copper abound; iron abounds in the coal and oolitic strata, and in a state of oxidule and carbonate in the older rocks; and silver is found in almost all of these formations; its ores being frequently combined with those of other metals, especially of lead and copper. There is such a connection between the contents of a vein and the nature of the rock in which the fissure is, that, when in the oldest rocks the same vein intersects clay-slate and granite, the contents of the parts enclosed in one rock differ very much from what is found in the other. It is believed that in the strata lying above the coal-measures none of the more precious metals have been found in England in such plenty as to defray the expense of raising them, although such a rule does not extend to the continent of Europe or to South America, where copper and silver ores abound in our new red sandstone series. In Great Britain no metal is raised in any stratum newer than the magnesian limestone. Metals exist chiefly in the primary and early secondary strata, especially near the junction of the granite and slates; and it is a fact that rich veins of lead, copper, tin, &c., abound only in and near the districts which have been greatly shaken by subterraneous movements. In other countries, as Auvergne and the Pyrenees, the presence of igneous rocks may have caused mineral veins to appear in more recent strata than those which contain them in Great Britain. When a mine is opened, a shaft like a well is sunk perpendicularly The infiltration of the rain and surface-water, together with subterranean springs and pools, would soon inundate a mine and put a stop to the work, were not adequate means employed to remove it. The steam-engine is often the only way of accomplishing what in many cases would otherwise be impossible, and the produce of mines has been in proportion to the successive improvements in that machine. In the Consolidated mines already mentioned there are nine steam-engines constantly pumping out the water; four of these, which are the largest ever made, together lift from thirty to fifty hogsheads of water per minute, from an average depth of 230 fathoms. The power of the steam-engines in draining the Cornish mines is equal to 44,000 horses—one-sixth of a bushel of coals performing the work of a horse. The largest engine is between 300 and 350 horse-power; but as horses must rest, and the engine works incessantly, it would require 1000 horses to do its work. Mines in high ground are sometimes drained to a certain depth by an adit or gallery dug from the bottom of a shaft in a sloping direction to a neighbouring valley. One of these adits extends through the large mining district of Gwennap, in Cornwall; it begins in a valley near the sea, and very little above its The ventilation of mines is accomplished by burning fires in some of the shafts, which are in communication with the others, so that currents of air flow up one and down the others. In some cases fresh air is carried into the mines by streams that are made to flow down some of the shafts. Were this not done, the heat, which increases with the depth, would be insupportable; ventilation diminishes the danger from the fire-damp, for, even where Sir Humphry Davy’s safety-lamp is used, accidents happen from the carelessness of the miners. The access to deep mines, as in Cornwall, is by a series of perpendicular or slightly inclined ladders, sometimes uninterrupted, but generally broken at intervals by resting-places. It is computed that one-third of a miner’s physical strength was exhausted in ascending and descending a deep mine: they are now drawn up by the steam-engine. The greatest depth to which man has excavated is nothing when compared with the radius of the earth. The Eselschacht mine at Kuttenberg in Bohemia, now inaccessible, which is 3778 feet below the surface, is deeper than any other mine. Its depth is only 150 feet less than the height of Vesuvius, and it is eight times greater than the height of the pyramid of Cheopos, or the cathedral of Strasburg. The Monkwearmouth coal-mine near Sunderland, descends to 1500 feet below the level of the sea, so that the barometer stands there at 31·80, which is higher than anywhere on the earth’s surface. The metals are very profusely diffused over the earth. Few countries of any extent do not contain some of them. A small number occur pure, but in general they are in the form of ores, in which the metal is chemically combined with other substances, and the ore is often so mixed with earthy matter and rock that it is necessary to reduce it to a coarse powder in order to separate the ore, which is rarely more than a third or fourth part of the mass brought above ground. Gold is found in almost every country, but in such minute quantities that it is often not worth the expense of working. It is almost always in a native state, and in the form of crystals, grains, or rolled masses. Sometimes it is combined with silver. It is exhausted in several parts of Europe where it was formerly found. The united produce of the mines in Transylvania, Hungary, the north-western districts of Austria, and the bed of the Danube, is nearly 60,000 ounces annually. Gold is found in small quantities in Spain, in the lead-hills in Scotland, and the Wicklow mountains in Ireland. Gold abounds in Asia, especially in Siberia. The deposits at the foot of the Ural mountains are very rich. In 1826 a piece of pure gold weighing 23 pounds was found there, along with others weighing three or four pounds each, together with the bones of elephants. All the diluvium there is ferruginous; and more to the east, as already mentioned, a region as large as France has lately been discovered with a soil rich in gold-dust, resting on rocks filled with it. In 1834 the treasures in that part of the AltaÏ chain called the Gold Mountains were discovered, forming a mountain-knot nearly as large as England, from which a great quantity of gold has been extracted. Gold is found in Tibet, in the Chinese province of Yun-nan, and abundantly in the mountains Africa has long furnished a large supply to Europe. That part of the Kong Mountains west of the meridian of Greenwich is one of the most auriferous regions in the world. The gold stratum lies from 20 to 25 feet below the surface, and increases in richness with the depth. It is found in particles and pieces in a reddish sand. Most of the streams from the table-land bring down gold, as well those that descend to the low ground to the north, as those that flow to the Atlantic. On the shores of the Red Sea it was found in sufficient quantity to induce the Portuguese to form a settlement there. In South America, the western Cordillera is poor in metals except in New Grenada, where the most westerly of the three chains of the Andes is rich in gold and platinum—a metal found only there, in Brazil, and on the European side of the Ural mountains—in alluvial deposits. The largest piece of platinum that has been found weighed 21 ounces. Gold is found in sand and gravel on the high plains of the Andes, on the low lands to the east of them, and in almost all the rivers that flow on that side. The whole country between Jaen de Bracamores and the Guaviare is celebrated for its metallic riches. Almost all the Brazilian rivers bring down gold; and the mine of Gongo Socco, near Rio de A great deal of silver is raised in Europe. The mines of Hungary are the most productive, especially those in the mountains of Chemnitz. The metalliferous mountains of the Erzgebirge are also very rich, as also the mines near Christiania in Sweden. Silver is also found in Saxony, Transylvania, and Austria. In no part of the old continent is silver in greater abundance than in the Ural and AltaÏ mountains, especially in the district of Kolywan. There are silver-mines in Armenia, Anatolia, Tibet, China, Cochin-China, and Japan. The richness of the Andes in silver can hardly be conceived, but the mines are frequently on such high ground that the profits are diminished by the difficulty of carriage, the expense of living in a barren country, sometimes destitute of water, where the miners suffer from the cold and snow, and especially the want of fuel. This is particularly the case at the silver-mines of Copiapo in Chile, where the country is utterly barren, and not a drop of In Peru there are silver-mines along the whole range of the Andes, from Caxamarea to the confines of the desert of Atacama. The richest at present are those of Pasco, which were discovered by an Indian in 1630. They have been worked without interruption since the beginning of the seventeenth century, and seem to be still inexhaustible. The soil under the town of Pasco is metalliferous, the ores probably forming a series of beds contemporaneous with the strata. The richness of these beds is not everywhere the same, but the nests of ore are numerous. The mines of Potosi, 16,150 feet above the sea-level, are celebrated for riches, but the owners have to contend with all the difficulties which such a situation imposes. The small depth at which the silver lies on the high plains of the Andes, and the quantity of it on the surface, is probably owing, as has been already stated, to the greater deposition of the sublimed mineral from refrigeration near the surface. The ore in the mines at Chota is near the surface over an extent of half a square league, and the filaments of silver are sometimes even entwined with the roots of the grass. This mine is 13,300 feet above the level of the sea, and even in summer the thermometer is below the freezing-point in the night. In the district of Huantajaya, not far from the borders of the Pacific, there are mines where masses of pure silver are found, of which one weighed 800 pounds. According to Baron Humboldt, the quantity of the precious metals brought to Europe between the discovery of America and the year 1803 was worth 1257 millions sterling; and the silver alone taken from the mines during that period would form a ball 89 feet in diameter. The disturbed state of the South American republics has interfered with the working of the mines. Lead-ore is very often combined with silver, and is then called Argentiferous Galena. It is one of the principal productions of the British mines, especially in the northern mining district, which occupies 400 square miles at the junction of Northumberland, Cumberland, Westmoreland, Durham, and Yorkshire. It comprises Alstan Moor, the mountain-ridge of Crossfell, and the Lead-mines are in operation in France, but not to any great amount: those of the south of Spain furnish large quantities of this metal; also in Saxony, Bohemia, and Carinthia, where they are very rich. Lead is not very frequently found in Siberia, though it does occur in the Nerchinsk mining district, in the basin of the river Amur. It is also a production of China, of the peninsula beyond the Ganges, and of America. It is also found in Lower Peru, Mexico, and in California, where the richest argentiferous lead is worked. [The northwest country, or Upper Mississippi Valley, is among the most remarkable in the world for the variety and abundance of its mineral deposits, and especially for those which are of most extensive use in the arts. The sulphuret of lead occupies about one degree of latitude, extending north from a point on the Mississippi, about eight miles below Galena, and lying on both sides, varying in width, till it covers as great an extent from east to west. On the east side of the river the lead-ore is found principally in a clay matrix, at a depth of sometimes only five or six feet from the surface; on the west side of the river it runs at the depth of one hundred feet or more, overlaid with magnesian limestone. To the south-west of the lead deposit is a very abundant bed of iron, about forty miles long by twenty-five broad. The copper region extends north from the lead deposits to Lake Superior; it embraces about three hundred square miles. To the south of the lead region is a vast bed of bituminous coal of good quality, at no great distance below the surface. In the mineral district there are about four thousand persons Quicksilver—a metal so important in separating silver from its ores, and in other arts as well as in medicine—occurs either liquid in the native state, or combined with sulphur in that of cinnabar. It is found in the mines of Idria and some other places in the Austrian empire, in the Palatinate on the left bank of the Rhine, and in Spain. The richest quicksilver mines of Europe, at the present day, are those of Almaden, where the quicksilver is found in the state of sulphuret chiefly. These mines were worked 700 years before the Christian era, and as many as 1200 tons of the metal are extracted annually. It occurs in China, Japan, and Ceylon, at San Onofro in Mexico; and in Peru, at Guancavelica, the mines of which, now almost deserted, produced, up to the beginning of the present century, the enormous quantity of 54,000 tons of quicksilver. The discovery of quicksilver mines in California has been announced. Copper is of such common occurrence that it would be vain to enumerate the localities where it is found. It is produced in Africa and America, in Persia, India, China, and Japan. The Siberian mines are very productive both in ore and native copper. Malachite is the most beautiful of the ores, and the choicest specimens come from Siberia. Almost every country in Europe yields copper. The mines in Sweden, Norway, and Germany are very productive; and it forms a principal part of our own mineral wealth. It is raised in all the principal mining districts in England and Wales. In Cornwall it is very plentiful, and is often associated with tin. The period at which the Cornish mines were first worked goes far beyond history, or even tradition: certain, however, it is that the Phoenicians came to Britain for tin. Probably copper was also worked very early in small quantities, for its exportation was forbidden in the time of Henry VIII. It was only in the beginning of the eighteenth century that the Cornish copper-mines were worked with success, in consequence of the invention of an improved machine for draining them. [On the lands south of Lake Superior is a body of copper ore, supposed to be the richest in the world. It is almost pure in some specimens: so that, as taken from the earth, it was wrought into church utensils by some of the French who first visited the place; and a portion of the large rock deposited on the grounds of the War Department, at Washington, has been polished so as to present the appearance of sheet-copper. At a recent meeting of the “American Association for the Advancement “At the Minesota mine, near the Ontonagon river, I had an opportunity of examining, in June, the most extraordinary mass yet met with. Two shafts had been sunk on the line of the vein 150 feet apart. At the depth of about 30 feet they struck massive copper, which lay in a huge sheet with the same underlay as that of the vein—about 55° towards the north. Leaving this sheet as a hanging wall, a level was run under it connecting the two shafts. For this whole distance of 150 feet the mass appears to be continuous, and how much further it goes on the line of the vein either way there is no evidence, nor beside to what depth it penetrates in the solid vein. I examined it with care, striking it repeatedly with my hammer in order to detect, if possible, by the sound, any break or interruption there might be in the mass—for a thin scale of stone encrusted it sometimes and concealed the face of the metal. Examinations had been made by drilling through this scale, where it attained the thickness of an inch or so; but in no place had any sign of a break been found. It forms the whole hanging wall of the level, showing a width of at least eight feet above the floor in which its lower edge was lost. It had been cut through in only one place, where a partial break afforded a convenient opportunity. Measuring the thickness here as well as the irregular shape of the gap admitted, it was found somewhat to exceed five feet. Assuming the thickness to average only one foot, there would be in this mass 1200 cubic feet, or about 250 tons—still it is not safe to assume even one foot, for the masses vary extremely in thickness. “The mode adopted to remove these masses is to cut channels through them with cold chisels, after they are shattered by large sand blasts put in behind them. Grooves are cut with the chisels across their smallest places, one man holding, and another striking, as in drilling. A chip of copper three-quarters of an inch wide, and up to six inches in length, is taken out, and the process is repeated until the groove passes through the mass. The expense “The greatest thickness of any mass cut through at the Cliff Mine has been about three feet. Their occurrence through the vein is not regular. Barren spots alternate with productive portions. The same is the case in all the mines. The total product of the Cliff Mine for the year 1848 is estimated at 830 tons, averaging 60 per cent. During the present year more than half this amount has been already sent down, and there is enough more on the surface and in sight in the mine to warrant the belief that 1000 tons will be the product of the year’s work, or 600 tons of copper. The whole amount of copper annually imported into the United States is about the value of two million dollars, or about 5400 tons. But little has been supplied from our own mines. Nine such mines, then, as the Cliff, would render us independent of foreign supplies. From present appearances, after careful examination of the region, and consideration of the progress made in mining since my last visit in 1846, I feel myself warranted in expressing a decided conviction that this amount of copper must be supplied in very few years, and this metal soon become, as lead already has, one of export instead of import. The recent failures of mining speculations, wildly undertaken, and ignorantly and extravagantly conducted, may for a time check the development of these mines; but their wonderfully rich character is now beginning to be properly appreciated, as well as the reliance which may be put in the surface-appearance of the veins. Some curious features in their character and distribution have been detected, which have heretofore escaped observation for want of sufficient data, and which will, I believe, be found of great consequence in the selection of the best localities. These, after farther examination, I may at another time make public. The history of these mines, so far, has remarkably proved the foresight and excellent judgment of the lamented Dr. Houghton, particularly so in his predictions of the disastrous effects that must result from such speculations as have caused the country to be overrun by hordes of adventurers. “The silver found associated with the copper has not proved of much importance, perhaps for the reason that the greater part of it is purloined by the miners. The Cliff Mine has probably yielded more than thirty thousand dollars worth, of which not more than a tenth part has been secured by the proprietors. I saw myself, the present season, no less than six pounds and eight ounces of lumps and bars of silver seized in the hands of an absconding workman.”] There are comparatively few coal-mines worked within the tropics; they are mostly in the temperate zones, especially between the Arctic Circle and the Tropic of Cancer; and as iron, the most useful of metals, is chiefly found in the carboniferous strata, it follows the same distribution. In fact, the most productive iron-mines yet known are in the temperate zones. In the eastern mining district of Siberia, in the valley of the river Vilui, the ores are very rich, and very abundant in many parts of the AltaÏ and Ural. In the latter, the mountain of Blagod, at 1534 feet above the sea, is one mass of magnetic iron-ore. The coal strata lie in basins, dipping from the sides towards the centre, which is often at a vast depth below the surface of the ground. The centre of the Liege coal-basin is 21,358 feet, or 31/2 geographical miles deep, which is easily estimated from the dip, or inclination, of the strata at the edges, and the extent of the basin. The coal lies in strata of small thickness and great extent. It varies in thickness from 3 to 9 feet, though in some instances several layers come together, and then it is 20 and even 30 feet thick; but these layers are interrupted by frequent dislocations, which raise the coal-seam towards the surface. These fissures, which divide the coalfield into insulated masses, are filled with clay, so that an accumulation of water takes place, which must be pumped up. There are three immense coalfields in England. The first lies north of the Trent, and occupies an area of 360 square miles; and although the quantity of coal annually raised in Northumberland and Durham amounts to a million and a half of tons, there is enough The Scotch coal-measures occupy the great central low-land of Scotland, lying between the southern high lands and the Highland mountains; the whole of that rude tract is occupied by them, besides which there are other coalfields of less extent. Coal has been found in seventeen counties in Ireland, but the island contains only four principal coal districts—Leinster, Munster, Connaught, and Ulster. Thus, there is coal enough in the British islands to last some thousands of years; and were it exhausted, our friends across the Atlantic have enough to supply the world for ages uncountable. Moreover, if science continues to advance at the rate it has lately done, a substitute for coal will probably be discovered before our own mines are worked out. In the western States, the Illinois coalfield, which occupies part The tropical regions of the globe have been so little explored that no idea can be formed of the quantity of coal or iron they contain; but as iron is so universal, it is probable that coal is not wanting. It is found in Formosa. Both abound in Borneo, and in various parts of tropical Africa and America. There is comparatively so little land in the southern temperate zone, that the mineral produce must be more limited than in the northern, yet New Holland, Van Diemen’s Land, and New Zealand are rich in coal and iron. Arsenic, used in the arts and manufactures, is generally found combined with other metals in many countries as well as our own. Manganese, zinc, bismuth, and antimony are raised to a considerable amount. As the qualities of the greater part of the more rare metals are little known, they have hitherto been interesting chiefly to the mineralogist. The mines of rock-salt in Cheshire seem to be inexhaustible. Enormous deposits of salt extend 600 miles on each side of the Carpathian mountains, and throughout wide districts in Austria, Gallicia, and Spain. It would not be easy to enumerate the places in Asia where rock-salt has been found. Armenia, Syria, and extensive tracts in the Punjab abound in it, also China and the Ural district; and the Andes contain vast deposits of rock-salt, some at great heights. Volcanic countries in both continents yield sulphur. Sicily, where it is found in the tertiary marine strata, unconnected with the volcanic district, is the magazine which supplies the greater part of the manufactures of Europe. It is often found beautifully crystallized. Asphalt, nitre, alum, and naphtha are found in various parts of Europe and Asia, and natron is procured from small lakes in an oasis on the west of the Valley of the Nile. The diffusion of precious stones is very limited. Diamonds are mostly found in a soil of sand and gravel, and in the beds of rivers. Brazil furnishes most of the diamonds in commerce; they are the produce of tracts on each side of the Sierra EspenhaÇo, and of a district watered by some of the affluents of the Rio San Francesco. During the century ending in 1822, diamonds were collected in Brazil to the value of three millions sterling, one of which weighed 1381/2 carats. The celebrated mines of The ruby and sapphire have the same crystalline form, and are nearly allied to corundum; both are found in Ceylon, in the gravel of streams. The rubies at Gharan, on the verge of the river Oxus, are found imbedded in limestone. The gravel of rivulets in the Birman empire contains the oriental, star, and opalescent rubies. The spinelle also occurs in that country in a district five days’ journey from Ava. The Hungarian rubies are of inferior value. The blue, green, yellow, and white sapphires are the produce of the Birman empire, and the spinelle is not uncommon in Brazil. The finest emeralds come from veins of clay-slate in the valley of Musa, in New Grenada. Beryls are found in Brazil, and in the old mines in Mount Zabarah, in Upper Egypt. Those of Hungary and of the Heubach Valley, near Saltzburg, are very inferior in colour and quality. Hungary and Bohemia yield the finest opals; the most esteemed are opaque, of a pale brown, and shine with the most brilliant iridescence; some are white, transparent, or semi-transparent, and radiant in colours: the precious opal is found in Hungary and in Mexico. The most beautiful garnets come from Bohemia and Hungary; they are found in the Hartz mountains, Ceylon, and many other localities. The turquoise is a Persian gem, and supposed to be the fossilized enamel of the tooth of a fossil mastodon; it is also found in Tibet and in the Belat-Tagh in Badakshan, which is the country of the lapis lazuli, mined by heating the rock, and then throwing cold water upon it. This beautiful mineral is also found in several places of the Hindoo Coosh, in the hills of Istalif north of Cabool, in Tibet, and in the Baikal mountains in Siberia. The cat’s-eye is peculiar to Ceylon; the king of Kandy had one two inches broad. Topaz, beryl, and amethyst are of very common occurrence, especially in Brazil, Siberia, and other places. They are little valued, and scarcely accounted gems. Agates are so beautiful on the table-land of Tibet, and in some parts of the desert of the Great Gobi, that they form a considerable article of commerce in China; and some are brought to Rome, where they are cut into cameos and intaglios. But the greater part of the agates, cornelians, and chalcedonies used in Europe are found in the trap-rocks of Oberstein, in the Palatinate. Thus, by her unseen ministers, electricity and reciprocal action, the great artificer Nature has adorned the depths of the earth and |