CHAPTER XIII.

Previous

The Continent of Australia—Tasmania, or Van Diemen’s Land—Islands—Continental Islands—Pelasgic Islands—New Zealand—New Guinea—Borneo—Atolls—Encircling Reefs—Coral Reefs—Barrier Reefs—Volcanic Islands—Areas of Subsidence and Elevation in the Bed of the Pacific—Active Volcanos—Earthquakes—Secular Changes in the Level of the Land.

The continent of New Holland, situate in the Eastern Pacific Ocean, is so destitute of large navigable rivers that probably no very high land exists in its interior, which, as far as it has been explored, seems to be singularly flat and low, but it is still so little known that no idea can be formed of its mean elevation. It is 2400 miles from east to west, and 1700 from north to south, and is divided into two unequal parts by the Tropic of Capricorn; consequently it has both a temperate and a tropical climate. New Guinea, separated from New Holland by Torres Straits, and traversed by the same chain of mountains with New Holland and Van Diemen’s Land, is so perfectly similar in structure, that it forms but a detached member of the adjacent continent.

The coasts of New Holland are indented by very large bays, and by harbours that might give shelter to all the navies in Europe. The most distinguishing feature of the eastern side, which is chiefly occupied by the British colony of New South Wales, is a long chain of mountains which never retires far from the coast, and, with the exception of some short deviations in its southern part, maintains a meridional directing through 35 degrees of latitude. It is continued at one extremity from Torres Straits, at the north of the Gulf of Carpentaria, far into the interior of New Guinea; and at the other it traverses the whole of Van Diemen’s Land. It is low in the northern parts of New Holland, being in some places merely a high land; but about the 30th degree of south latitude it assumes the form of a regular mountain-chain, and, running in a very tortuous line from N.E. to S.W., terminates its visible course at Wilson’s Promontory, the southern extremity of the continent. It is continued, however, by a chain of mountainous islands across Bass’s Straits to Cape Portland, in Van Diemen’s Land; from thence the range proceeds in a zigzag line of high and picturesque mountains to South Cape, where it ends, having, in its course of 1500 miles, separated the drainage of both countries into eastern and western waters.

The distance of the chain from the sea in New South Wales is from 50 to 100 miles, but at the 32d parallel it recedes to 150, yet soon returns, and forms the wild group of the Corecudgy Peaks, from whence, under the names of the Blue Mountains and Australian Alps, its highest part, it proceeds in a general westerly direction to the land’s end.

The average height of these mountains is only from 2400 to 4700 feet above the level of the sea, and even Mount Kosciusko, the loftiest of the Australian Alps, is not more than 6500 feet high; yet its position is so favourable, that the view from its snowy and craggy top sweeps over an area of 7000 square miles. The rugged and savage character of these mountains far exceeds what might be expected from their height: in some places, it is true, their tops are rounded and covered with forests; but by far the greater part of the chain, though wooded along the flanks, is crowned by naked needles, tooth-formed peaks, and flat crests of granite or porphyry, mingled with patches of snow. The spurs give a terrific character to these mountains, and in many places render them altogether inaccessible, both in New South Wales and Van Diemen’s Land. These shoot right and left from the ridgy axis of the main range, equal to it in height, and separated from it, and from one another, by dark and almost subterraneous gullies, like rents in the bosom of the earth, iron-bound by impracticable precipices, and streams flowing through them in black silent eddies or foaming torrents. The intricate character of these ravines, the danger of descending into them, and the difficulty of getting out again, render this mountain-chain, in New South Wales at least, almost a complete barrier between the country on the coast and that in the interior—a circumstance very unfavourable to the latter.[72]

In New South Wales the country slopes westward from these mountains to a low, flat, unbroken plain. On the east side, darkly verdant and round-topped hills and ridges are promiscuously grouped together, leading to a richly-wooded undulating country, which gradually descends to the coast, and forms the valuable lands of the British colony. Discovered by Cook in the year 1770, it was not colonized till 1788. It has become a prosperous country; and although new settlers in the more remote parts suffer the privations and difficulties incident to their position, yet there is educated society in the towns, with the comforts and luxuries of civilized life.

The coast-belt on the western side of New Holland is generally of inferior land, with richer tracts interspersed near the rivers, and bounded on the east by a range of primary mountains from 3000 to 4000 feet high, in which granite occasionally appears. Beyond this the country is level, and the land better, though nowhere very productive except in grass.

None of the rivers of New Holland are navigable to any great distance from their mouths. The want of water is severely felt in the interior, which, as far as it is known, is a treeless desert of sand, swamps, and jungle; yet a belief prevails that there is a large sea or fresh-water lake in its centre; and this opinion is founded partly on the nature of the soil, and also because all the rivers that flow into the sea on the northern coast, between the Gulfs of Van Diemen and Carpentaria, converge towards their sources, as if they served for drains to some large body of water.

However unpropitious the centre of the continent may be—and the shores generally have the same barren character—there is abundance of fine country inland from the coast. On the north all tropical productions might be raised, and in so large a continent there must be extensive tracts of arable land, though its peculiar character is pastoral. There are large forests on the mountains and elsewhere, yet that moisture is wanting which clothes other countries in the same latitudes with rank vegetation. In the colonies, the clearing of a great extent of land has modified in some degree the mean annual temperature, so that the climate has become hotter and drier, and not thereby improved.

Van Diemen’s Land, of triangular form, has an area of 27,200 square miles, and is very mountainous. No country has a greater number of deep, commodious harbours; and as most of the rivers, though not navigable to any distance, end in arms of the sea, they afford secure anchorage for ships of any size. The mountain-chain that traverses the colony of New South Wales and the islands in Bass’s Straits, rises again from Cape Portland, and, winding through Van Diemen’s Land in the form of the letter Z, separates it into two nearly equal parts, with a mean height of 3750 feet, and at an average distance of 40 miles from the sea. It encloses the basins of Derwent and Heron rivers, and, after sending a branch between them to Hobart Town, ends at South Cape. The offsets which shoot in all directions are as savage and full of impassable chasms as it is itself. There are cultivable plains and valleys along the numerous rivers and large lakes by which the country is well watered; so that Van Diemen’s Land is more agricultural and fertile than the adjacent continent, but its climate is wet and cold. The uncleared soil of both countries, however, is far inferior to that in the greater part of North or South America.[73]

Granite constitutes the entire floor of the western portion of New South Wales, and extends far into the interior of the continent, bearing a striking resemblance in character to a similar portion of the AltaÏ chain described by Baron Humboldt. The central axis of the mountain-range, in New South Wales and in Van Diemen’s Land, is of granite, syenite, and quartz rock; but in early times there had been great invasions of volcanic substances, as many parts of the main chain, and most of its offsets, are of the older igneous rocks. The fossiliferous strata of the two colonies are mostly of the PalÆozoic period, but their fossil fauna is poor in species. Some are identical with, and others are representatives of, the species of other countries, even of England. It appears from their coal-measures that the flora of these countries was as distinct in appearance from that of the northern hemisphere, previous to the carboniferous period, as it is at the present day.

Though the innumerable islands that are scattered through the ocean and seas differ much in size, form, and character, they have been grouped by M. Von Buch into the two distinct classes of Continental and Pelasgic islands, most of the latter being either of volcanic or coral formation. Continental islands are long in proportion to their breadth, and follow each other in succession along the margin of the continents, as if they had been formed during the elevation of the mainland, or had subsequently been separated from it by the action of the sea, and still mark its ancient boundary. These islands, which follow one another in their elongated dimensions, generally run parallel to the maritime chains of mountains, and are mostly of the same structure, so that they suggest the idea of a submarine portion of the maritime range that has not yet completely emerged from the deep—or, if sinking, has not yet disappeared below the waves.

America offers numerous examples of this kind of island. On the north-western coast there is a long chain of them, beginning with the New Norfolk group, and ending with Vancouver’s Island, all similar and parallel to the maritime chain. Another range of Continental islands occurs at the southern extremity of America, extending from Chiloe to Cape Horn, evidently an exterior range of the Patagonian Andes, and the southern prolongation of the granitic or coast chain of Chile; in the Gulf of Mexico, the ancient margin of the mainland is marked by the curved group of Porto Rico, San Domingo, Jamaica, and Cuba, which nearly joins the peninsula of Yucatan. The various islands along the American coast of the Polar Ocean are the shattered fragments of the continent.

The old continent also affords innumerable examples; along the whole coast of Norway, from North Cape southwards, there is a continuous chain of rocky islands similar and parallel to the great range of the Scandinavian Alps; Great Britain itself, with the Hebrides, Orkney, and Zetland islands, are remarkable instances of Continental islands. It would be superfluous to mention the various instances which occur in the Mediterranean, where many of the islands are merely the prolongations of the mountain-chains of the mainland rising above the sea, as Corsica and Sardinia, which are a continuation of the Maritime Alps.

The great central chain of Madagascar and its elongated form, parallel to the Lupata Mountains, show that the island once formed part of the African continent. Asia, also, abounds in instances, as Sumatra, Java, and the Moluccas, and another vast chain extends along the western coast of Asia from Formosa to Kamtchatka.

Pelasgic islands have risen from the bed of the ocean, independently of the continents, and generally far from land. They are mostly volcanic, altogether or in part; often very lofty; sometimes single, and frequently in groups, and each group has, or formerly has had, a centre of volcanic action in one or more of the islands, round which the others have been formed. Many have craters of elevation, that is to say, they have been raised up in great hollow domes by the internal elastic vapours, and have either remained so, have become rent at the surface into gigantic fissures, or have collapsed into hollow cups, in which craters have formed, by the eruption of loose incoherent matter, or of lava currents, when the pressure from below was removed:[74] a considerable number have active vents.

The small islands and groups scattered at enormous distances from one another, within the Antarctic Circle, are all of volcanic formation, though none are active. In the Atlantic, Tristan da Cunha, St. Helena, Ascension, and Madeira are volcanic, though not now actively so; whereas the Cape de Verde, Canaries, and Azores have each volcanic vents: the peak of Teyda, in Teneriffe, is one of the most magnificent volcanic cones in the world.

The labyrinth of islands scattered over the Pacific Ocean for more than 30 degrees on each side of the equator, and from the 130th eastern meridian to Sumatra, which all but unites this enormous archipelago to the continent of Asia, has the group of New Zealand or Tasmania, and the continent of Australia, with its appendage, Van Diemen’s Land, on the south, and altogether forms a region which, from, the unstable nature of the surface of the earth, is partly the wreck of a continent that has been engulfed by the ocean, and partly the summits of a new one rising above the waves. This extensive portion of the globe is in many parts terra incognita; the Indian Archipelago has been little explored, and, with the exception of our colonies in New Holland and New Zealand, is little known.

M. Von Buch conceives that the enormous circuit, beginning with New Zealand and extending through Norfolk Island, New Caledonia, New Hebrides, Solomon’s Island, New Britain, New Hanover, New Ireland, Louisiade, and New Guinea, once formed the western and northern boundary of the Australian continent.

New Zealand, divided into three islands by rocky and dangerous channels, is superior to Australia in richness of soil, fertility, and beauty; it abounds in a variety of vegetable and mineral productions. High mountains, of volcanic origin, run through the islands, which, in the most northerly, rise 14,000 feet above the stormy ocean around, buried two-thirds of their height in permanent snow and glaciers, exhibiting on the grandest scale all the alpine characters, with the addition of active volcanos on the eastern and western coasts: that of Tangarara pours forth deluges of boiling water, which deposit vast quantities of siliceous sinter like the Geysers in Iceland; and such is the vitality of the vegetation, that plants grow richly on the banks, and even in water too hot to be endured.[75] The coast is a frozen country, overspread with a most luxuriant but dark and gloomy vegetation. There are undulating tracts and table-lands of great extent without a tree, over-run by ferns and a low kind of myrtle; but the mountain-ridges are clothed with dense and gigantic forests. There is much good land and many lakes, with navigable rivers, the best of harbours, and a mild climate; so that no country is better suited for a prosperous and flourishing colony. It may be considered, even at this early period of its colonial existence, as the Great Britain of the southern hemisphere.

A very different scene from the stormy seas of New Zealand presents itself to the north of Australia. There, vivified by the glowing sun of the equator, the islands of the Indian Archipelago are of matchless beauty, crowned by lofty mountains, loaded with aromatic verdure, that shelve to the shore, or dip into a transparent glassy sea. Their coasts are cut by deep inlets, and watered by the purest streams, which descend in cascades rushing through wild crevices. The whole is so densely covered with palms and other beautiful forms of tropical vegetation that they seem to realize a terrestrial paradise.

Papua or New Guinea, the largest island in the Pacific after New Holland, is 1100 miles long and 400 in width, with mountains rising above mountains, till in the west they attain the height of 16,000 feet, capped with snow, and two volcanos burn on its northern shores. From its position so near the equator it is probable that New Guinea has the same vegetation with the Spice Islands to the east, and, from the little that is known of it, must be one of the finest countries in existence.

Borneo, next in size to New Guinea, is a noble island, divided into two nearly equal parts by the equator, and traversed through its whole length by magnificent chains of mountains, which end in three branches at the Java Sea. Beautiful rivers flow from them to the plains, and several of these spring from a spacious lake on the table-land in the interior, among the peaks of Keni-Balu, the highest point of the island. Diamonds, gold, and antimony are among its minerals; gums, gutta percha, precious woods, and all kinds of spices and tropical fruits are among its vegetable productions.

Situate in the centre of a vast archipelago, and in the direct line of an extensive and valuable commerce, it will in the course of time become the seat of a great nation, whose civilization and prosperity will hand down to posterity the name of the enterprising, philanthropic Sir James Brooke, Rajah of Sarawak, with the highest honour to which man can aspire. The climate is healthy, tempered by sea-breezes, and in some parts even European; and its appendage, the small island of Labuan, rich in coal, is happily situate in the route of steam-vessels between India and China.

A volume might be written on the beauty and riches of the Indian Archipelago. Many of the islands are hardly known; the interior of the greater number has never been explored, so that they offer a wide field of discovery to the enterprising traveller, and they are now of easier access since the seas have been cleared of pirates by the exertions of the Honourable Captain Keppel, and other officers of Her Majesty’s Navy.

They have become of much importance since our relations with China have been extended, on which account surveys of their coasts have been already made, and are going on, under the able direction of the Hydrographer of the Navy, Sir F. Beaufort. The great intertropical islands of the Pacific, likewise other large islands, as Ceylon and Madagascar, in the Indian Seas, which by the way do not differ in character from the preceding, are really continents in miniature, with their mountains and plains, their lakes and rivers; and in climate they vary, like the main land, with the latitude, only that continental climates are more extreme both as to heat and cold.

It is a singular circumstance, arising from the instability of the crust of the earth, that all the smaller tropical pelasgic islands in the Pacific and Indian Oceans are either volcanic or coralline, except New Caledonia and the Seychelles; and it is a startling fact, that in most cases where there are volcanos the land is rising by slow and almost imperceptible degrees above the ocean, whereas there is every reason to believe that those vast spaces, studded with coral islands or atolls, are actually sinking below it, and have been for ages.[76]

There are four different kinds of coral formations in the Pacific and Indian Oceans, all entirely produced by the growth of organic beings, and their detritus, namely, lagoon islands or atolls, encircling reefs, barrier reefs, and coral fringes. They are all nearly confined to the tropical regions; the atolls to the Pacific and Indian Oceans alone.

An atoll or lagoon island consists of a chaplet or ring of coral, enclosing a lagoon or portion of the ocean in its centre. The average breadth of the part of the ring above the surface of the sea is about a quarter of a mile, oftener less, and it seldom rises higher than from 6 to 10 or 12 feet above the waves. Hence, the lagoon islands are not discernible, even at a very small distance, unless when they are covered with the cocoa-nut, palm, or the pandanus, which is frequently the case. On the outer side this ring or circlet shelves down to the distance of 100 or 200 yards from its edge, so that the sea gradually deepens to 25 fathoms, beyond which the sides plunge at once into the unfathomable depths of the ocean, with a more rapid descent than the cone of any volcano. Even at the small distance of some hundred yards, no bottom has been found with a sounding-line a mile and a half long. All the coral at a moderate depth below water is alive—all above is dead, being the detritus of the living part, washed up by the surf, which is so tremendous on the windward side of the tropical islands of the Pacific and Indian Oceans, that it is often heard miles off, and is frequently the first warning to seamen of their approach to an atoll.

On the lagoon side, where the water is calm, the bounding ring or reef shelves into it by a succession of ledges, also of living coral, though not of the same species with those which build the exterior wall and the foundations of the whole ring. The perpetual change of water brought into contact with the external coral by the breakers probably supplies them with more food than they could obtain in a quieter sea, which may account for their more luxuriant growth. At the same time, they deprive the whole of the coral in the interior of the most nourishing part of their food, because the still water in the lagoon, being supplied from the exterior by openings in the ring, ceases to produce the hardier corals; and species of more delicate forms, and of much slower growth, take their place.[77] The depth of the lagoon varies, in different atolls, from 20 to 50 fathoms, the bottom being partly detritus and partly live coral. By the growth of the coral, some few of the lagoons have been filled up; but the process is very slow from the causes assigned, and also because there are marine animals that feed on the living coral, and prevent its indefinite growth. In all departments of nature, the exuberant increase of any one class is checked and limited by others. The coral is of the most varied and delicate structure, and of the most beautiful tints: dark brown, vivid green, rich purple, pink, deep blue, peach-colour, yellow, with dazzling white, contrasted with deep shadows, shine through the limpid water; while fish of the most gorgeous hues swim among the branching coral, which are of many different kinds, though all combine in the structure of these singular islands. Lagoon islands are sometimes circular, but more frequently oval or irregular in their form. Sometimes they are solitary or in groups, but they occur most frequently in elongated archipelagos, with the atolls elongated in the same direction. The grouping of atolls bear a perfect analogy to the grouping of the archipelagos of ordinary islands.

The size of these fairy rings of the ocean varies from 2 to 90 miles in diameter, and islets are frequently formed on the coral rings by the washing up of the detritus, for they are so low that the waves break over them in high tides or storms. They have openings or channels in their circuit, generally on the leeward side, where the tide enters, and by these ships may sail into the lagoons, which are excellent harbours, and even on the surface of the circlet or reef itself there are occasionally boat-channels between the islets.

Dangerous Archipelago, lying east of the Society Islands, is one of the most remarkable assemblages of atolls in the Pacific Ocean. There are 80 of them, generally in a circular form, surrounding very deep lagoons, and separated from each other by profound depths. The reefs or rings are about half a mile wide, and seldom rise more than 10 feet above the edge of the surf, which beats upon them with such violence that it may be heard at the distance of 8 miles; and yet on that side the coral insects build more vigorously, and vegetation thrives better, than on the other. Many of the islets are inhabited.

The Caroline Archipelago, the largest of all, lies north of the equator, and extends its atolls in 60 groups over 1000 miles. Many are of great size, and all are beat by a tempestuous sea and occasional hurricanes. The atolls in the Pacific Ocean and China Sea are beyond enumeration. Though less frequent in the Indian Ocean, none are more interesting, or afford more perfect specimens of this peculiar formation, than the Maldive and Laccadive archipelagos, both nearly parallel to the coast of Malabar, and elongated in that direction. The former is 470 miles long and about 50 miles broad, with atolls arranged in a double row, separated by an unfathomable sea, into which their sides descend with more than ordinary rapidity. The largest atoll is 88 miles long and somewhat less than 20 broad; Suadiva, the next in size, is 44 miles by 23, with a large lagoon in its centre, to which, there is access by 42 openings. There are inhabited islets on most of the chaplets or rings not higher than 20 feet, while the reefs themselves are nowhere more than 6 feet above the surge.

The Laccadives run to the north of this archipelago in a double line of nearly circular atolls, on which are low inhabited islets.

Encircling reefs differ in no respect from atoll-reefs, except that they have one or more islands in their lagoon. They commonly form a ring round mountainous islands, at a distance of two or three miles from the shore, rising on the outside from a very deep ocean, and separated from the land by a lagoon or channel 200 or 300 feet deep. These reefs surround the submarine base of the island, and, rising by a steep ascent to the surface, they encircle the island itself. The Caroline Archipelago exhibits good examples of this structure in the encircled islands of Hogoleu and Siniavin; the narrow ring or encircling reef of the former is 135 miles in its very irregular circuit, on which are a vast number of islets: six or eight islands rise to a considerable height from its lagoon, which is so deep, and the opening to it so large, that a frigate might sail into it. The encircling reef of Siniavin is narrow and irregular, and its lagoon is so nearly filled by a lofty island, that it leaves only a strip of water round it from 2 to 5 miles wide and 30 fathoms deep.

Otaheite [Tahiti], the largest of the Society group, is another instance of an encircled island of the most beautiful kind; it rises in mountains 7000 feet high, with only a narrow plain along the shore, and, except where cleared for cultivation, it is covered with forests of cocoa-nut, palms, bananas, bread-fruit, and other productions of a tropical climate. The lagoon, which encompasses it like an enormous moat, is 30 fathoms deep, and is hemmed in from the ocean by a coral band of the usual kind, at a distance varying from half a mile to three miles.

Barrier-reefs are of precisely the same structure as the two preceding classes, from which they only differ in their position with regard to the land. A barrier reef off the north-east coast of the continent of Australia is the grandest coral formation existing. Rising at once from an unfathomable ocean, it extends 1000 miles along the coast, with a breadth varying from 200 yards to a mile, and at an average distance of from 20 to 30 miles from the shore, increasing in some places to 60 and even 70 miles. The great arm of the sea included between it and the land is nowhere less than 10, occasionally 60 fathoms deep, and is safely navigable throughout its whole length, with a few transverse openings by which ships can enter. The reef is really 1200 miles long, because it stretches nearly across Torres Straits. It is interrupted off the southern coast of New Guinea by muddy water, which destroys the coral animals, probably from some great river on that island. There are also extensive barrier-reefs on the islands of Louisiade and New Caledonia, which are exactly opposite to the great Australian reef; and as atolls stud that part of the Pacific which lies between them, it is called the Coralline Sea. The rolling of the billows along the great Australian reef has been admirably described. “The long ocean-swell, being suddenly impeded by this barrier, lifted itself in one great continuous ridge of deep blue water, which, curling over, fell on the edge of the reef in an unbroken cataract of dazzling white foam. Each line of breaker ran often one or two miles in length with not a perceptible gap in its continuity. There was a simple grandeur and display of power and beauty in this scene that rose even to sublimity. The unbroken roar of the surf, with its regular pulsation of thunder, as each succeeding swell fell first on the outer edge of the reef, was almost deafening, yet so deep-toned as not to interfere with the slightest nearer and sharper sound.... Both the sound and sight were such as to impress the spectator with the consciousness of standing in the presence of an overwhelming majesty and power.”[78]

Coral-reefs are distinct from all the foregoing; they are merely fringes of coral along the margin of a shore, and, as they line the shore itself, they have no lagoons. A vast extent of coast, both on the continents and islands, is fringed by these reefs, and, as they frequently surround these shoals, they are very dangerous.

Lagoon islands are the work of various species of coral animals; but those particular polypi which build the external wall, the foundation and support of the whole ring or reef, are most vigorous when most exposed to the breakers; they cannot exist at a greater depth than 25 or 30 fathoms at most, and die immediately when left dry: yet the coral wall descends precipitously to unfathomable depths; and although the whole of it is not the work of these animals, yet the perpendicular thickness of the coral is known to be very great, extending hundreds of feet below the depth at which these polypi cease to live. From an extensive survey of the Coralline Seas of the tropics, Mr. Darwin has found an explanation of these singular phenomena in the instability of the crust of the earth.

Since there are certain proofs that large areas of the dry land are gradually rising, and others sinking down, so the bottom of the ocean is not exempt from the general change that is slowly bringing about a new state of things; and as there is evidence, on multitudes of the volcanic islands in the Pacific, of a rise in certain parts of the basis of the ocean, so the lagoon islands indicate a subsidence in others—changes arising from the expansion and contraction of the strata under the bed of the ocean.

There are strong reasons for believing that a continent once occupied a great part of the tropical Pacific, some part of which subsided by slow and imperceptible degrees. As portions of it gradually sank down below the surface of the deep, the tops of mountains and table-lands would remain as islands of different magnitude and elevation, and would form archipelagos elongated in the direction of the mountain-chains. Now, the coral-animal, which constructs the outward wall and mass of the reefs, never builds laterally, and cannot exist at a greater depth than 25 or 30 fathoms. Hence, if it began to lay the foundation of its reef on the submerged flanks of an island, it would be obliged to build its wall upwards in proportion as the island sank down, so that at length a lagoon would be formed between it and the land. As the subsidence continued, the lagoon would increase, the island would diminish, and the base of the coral-reef would sink deeper and deeper, while the animal would always keep its top just below the surface of the ocean, till at length the island would entirely disappear, and a perfect atoll would be left. If the island were mountainous, each peak would form a separate island in the lagoon, and the encircled islands would have different forms, which the reefs would follow continuously. This theory perfectly explains the appearances of the lagoon islands and barrier-reefs, the continuity of the reef, the islands in the middle of the lagoons, the different distances of the reefs from them, and the forms of the archipelago, so exactly similar to the archipelagos of ordinary islands, all of which are but the tops of submerged mountain-chains, and generally partake of their elongated forms.[79]

Every intermediate form between an atoll and an encircling reef exists: New Caledonia is a link between them. A reef runs along the north-western coast of that island 400 miles, and for many leagues never approaches within 8 miles of its shore, and the distance increases to 16 miles near the southern extremity. At the other end the reefs are continued on each side 150 miles beyond the sub-marine prolongation of the land, marking the former extent of the island. In the lagoon of Keeling Atoll, situate in the Indian Ocean, 600 miles south of Sumatra, many fallen trees and a ruined store-house show that it has subsided: these movements take place during the earthquakes at Sumatra, which are also felt in this atoll. Violent earthquakes have lately been felt at Vanikora (celebrated for the wreck of La PÉrouse), a lofty island of the Queen Charlotte group, with an encircling reef in the western part of the South Pacific, and on which there are marks of recent subsidence. Other proofs are not wanting of this great movement in the beds of the Pacific and Indian Oceans.

The extent of the atoll formations, including under this name the encircling reefs, is enormous. In the Pacific, from the southern end of Low Archipelago to the northern extremity of Marshall or Radick Archipelago, a distance of 4500 miles, and many degrees of latitude in breadth, atolls alone rise above the ocean. The same may be said of the space in the Indian Ocean between Saya de Matha and the end of the Laccadives, which includes 25 degrees of latitude—such are the enormous areas that have been, and probably still are, slowly subsiding. Other spaces of great extent may also be mentioned, as the large archipelago of the Carolinas, that in the Coralline Sea of the north-west coast of Australia, and an extensive one in the China Sea.

Though the volcanic islands in the Pacific are so numerous, there is not one within the areas mentioned, and there is not an active volcano within several hundred miles of an archipelago, or even group of atolls. This is the more interesting, as recent shells and fringes of dead coral, found at various heights on their surfaces, show that the volcanic islands have been rising more and more above the surface of the ocean for a very long time.

The volcanic islands also occupy particular zones in the Pacific, and it is found from extensive observation that all the points of eruption fall on the areas of elevation.[80]

One of the most terribly active of these zones begins with the Banda group of islands, and extends through the Sunda group of Timor, Sumbawa, Bali, Java, and Sumatra, separated only by narrow channels, and altogether forming a gently curved line 2000 miles long; but as the volcanic zone is continued through Barren Island and Narcondam in the Bay of Bengal, northward through the islands along the coast of Aracan, the entire length of this volcanic range is a great deal more. During the last hundred years all the islands and rocks for 100 miles along the coast of Aracan have been gradually rising. The greatest elevation of 22 feet has taken place about the centre of the line of upheaval, in the north-west end of the island of Cheduba, containing two mud volcanos, and is continued through Foul Island and the Terribles.[81]

The little island of Gonung-Api, belonging to the Banda group, contains a volcano of great activity; and such is the elevating pressure of the submarine fire in that part of the ocean, that a mass of black basalt rose up, of such magnitude as to fill a bay 60 fathoms deep, so quietly that the inhabitants were not aware of what was going on till it was nearly done. Timor and the other adjacent islands also bear marks of recent elevation.

There is not a spot of its size on the face of the earth that contains so many volcanos as the island of Java.[82] A range of volcanic mountains, from 5000 to 13,000 feet high, forms the central crest of the island, and ends to the east in a series of 38 separate volcanos with broad bases, rising gradually into cones. They all stand on a plain but little elevated above the sea, and each individual mountain seems to have been formed independently of the rest. Most of them are of great antiquity, and are covered with thick vegetation. Some are extinct, or only emit smoke; from others sulphureous vapours issue with prodigious violence; one has a large crater filled with boiling water; and a few have had fierce eruptions of late years. The island is covered with volcanic spurs from the main ridge, united by cross chains, together with other chains of less magnitude, but no less fury.

In 1772 the greater part of one of the largest volcanic mountains was swallowed up after a short but severe combustion; a luminous cloud enveloped the mountain on the 11th of August, and soon after the huge mass actually disappeared under the earth with tremendous noise, carrying with it about 90 square miles of the surrounding country, 40 villages, and 2957 of their inhabitants.

The northern coast of Java is flat and swampy, but the southern provinces are beautiful and romantic; yet in the lovely peaceful valleys the stillness of night is disturbed by the deep roaring of the volcanos, many of which are perpetually burning with slow but terrific action.

Separated by narrow channels of the sea, Bali and Sumbawa are but a continuation of Java, the same in nature and structure, but on a smaller scale, their mountains being little more than 8000 feet high.

The intensity of the volcanic force under this part of the Pacific may be imagined from the eruption of Tomboro in Sumbawa in 1815, which continued from the 5th of April till July. The explosions were heard at the distance of 970 miles; and in Java, at the distance of 300 miles, the darkness during the day was like that of deep midnight, from the quantity of ashes that filled the air: they were carried to Bencoolen, a distance of 1100 miles, which, with regard to distance, is as if the ashes of Vesuvius had fallen at Birmingham. The country round was ruined, and the town of Tomboro was submerged by heavy rollers from the ocean.

In Sumatra the extensive granitic formations of Eastern Asia join the volcanic series which occupies so large a portion of the Pacific. This most beautiful of islands presents the boldest aspect; it is indented by arms of the most transparent sea, and watered by innumerable streams; it displays in its vegetation all the bright colouring of the tropics. Here the submarine fire finds vent in three volcanos on the southern, and one on the northern side of the island. A few atolls, many hundreds of miles to the south, show that this volcanic zone alternates with an area of subsidence.

More to the north, and nearly parallel to the preceding zone, another line of volcanic islands begins to the north of New Guinea, and passes through New Britain, New Ireland, Solomon Islands, and the New Hebrides, containing many open vents. This range or area of elevation separates the Coralline Sea from the great chain of atolls on the north between Ellice’s group and the Caroline Islands, so that it lies between two areas of subsidence.

The third and greatest of all the zones of volcanic islands includes Gilolo, one of the Molucca group, which is bristled with volcanic cones; and from thence it may be traced northwards through the Philippine Islands and Formosa: bending thence to the north-east, it passes through Loo-Choo, the Japan Archipelago, and is continued by the Kurile Islands to the peninsula of Kamtchatka, where there are several volcanos of great elevation.

The Philippine Islands and Formosa form the volcanic separation between the atoll region in the China Sea, and that of the Caroline and Pellew groups.

There are six islands east of Jephoon in the Japan Archipelago which are subject to eruptions, and the internal fire breaks through the Kurile Islands in 18 vents, besides having raised two new islands in the beginning of this century, one 4 miles round, and the other 3000 feet high, though the sea there is so deep that the bottom has not been reached with a line 200 fathoms long.

Thus, some long rent in the earth had extended from the tropics to the gelid seas of Okhotsk, probably connected with the peninsula of Kamtchatka: a new one begins to the east of the latter in the Aleutian Islands, which are of the most barren and desolate aspect, perpetually beaten by the surge of a restless ocean, and bristled by the cones of 24 volcanos; they sweep in a half-moon round Behring’s Sea till they join the volcanic peninsula of Russian America.

The line of volcanic agency has been followed far beyond the limits of the coral-working animals, which extend but a short way on each side of the tropics; but it has been shown that in the equatorial regions immense areas of elevation alternate with as great areas of subsidence: north of New Holland they are so mixed that it indicates a point of convergence.[83]

On the other side of the Pacific the whole chain of the Andes, and the adjacent islands of Juan Fernandez and the Galapagos, form a vast volcanic area, which is actually now rising; and though there are few volcanic islands north of the zone of atolls, yet those that be indicate great internal activity, especially in the Sandwich Islands, where the volcanos of Owhyhee [Hawaii] are inferior to none in awful sublimity. That of Kirawah is on the flanks of Mowna Roa, which is itself a volcano. It was seen in high activity by Mr. Douglas in 1834; he describes it as a deep sunken pit, occupying five square miles, covered with masses of lava which had been in a state of recent fusion. In the midst of these were two lakes of liquid lava: in both there was a vast caldron in furious ebullition, occasionally spouting to the height of from 20 to 70 feet, whence streams of lava, hurrying along in fiery waves, were finally precipitated down an ignited arch, where the force of the lava was partly arrested by the escape of gasses, which threw back huge blocks, and literally spun them into threads of glass, which were carried by the wind like the refuse of a flax-mill. He says the noise could hardly be described—that of all the steam-engines in the world would be a whisper to it; and the heat was so overpowering, and the dryness of the air so intense, that the very eyelids felt scorched and dried up.[84]

It may be observed that, where there are coral fringes, the land is either rising or stationary; for, were it subsiding, lagoons would be formed. On the contrary, there are many fringing reefs on the shores of volcanic islands along the coasts of the Red Sea, the Persian Gulf, and the West Indian islands, all of which are rising. Indeed, this occurrence, in numberless instances, coincides with the existence of upraised organic remains on the land.

As the only coral formations in the Atlantic are fringing reefs, and as there is not one in its central expanse, except in Bermuda, it may be concluded that the bed of the ocean is not sinking; and with the exception of the Leeward Islands, the Canaries, the Azores, and the Cape de Verde groups, there are no active volcanos on the islands or on the coasts of that ocean.

At present the great continent has few centres of volcanic action in comparison with what it once had. The Mediterranean is still undermined by fire, which occasionally finds vent in Vesuvius and the stately cone of Etna. Though Stromboli constantly pours forth inexhaustible showers of incandescent matter, and a temporary island now and then starts up from the sea, the volcanic action is diminished, and Italy has become comparatively more tranquil.

The table-land of Western Asia, especially Azerbijan, had once been the seat of intense commotion, now spent, as the Seiban Dagh and Ararat, or only smoking from the snowy cone of Demavend. The table-land of Eastern Asia furnishes the solitary instance of igneous explosion at a distance of 1500 miles from the sea, in the volcanic chain of the Thean-Tchan.

Besides the two active volcanos of the Pe-shan and Ho-tcheou in the chain itself, at the distance of 670 miles from each other, with a solfatara between them, it is the centre of a most extensive volcanic district, extending northward to the AltaÏ Mountains, in which there are many points of connection between the interior of the earth and the atmosphere, not by volcanos, but by solfataras, hot springs, and vapours. In the range of Targatabai, in the country of the Kirghiz, there is a mount said to emit smoke and even flame, which produces sulphur and sal-ammoniac in abundance. It is not ascertained that there are any mountains in China that eject lava, but there are many fire-hills and fire-springs; the latter are real Artesian wells five or six inches wide, and from 1500 to 3000 feet deep: from some of these water rises containing a great quantity of common salt; from others gases issue; and when a flame is applied, fire rushes out with great violence, rising 20 or 30 feet high, with a noise like thunder. The gas, conducted in tubes of bamboo cane, is used in the evaporation of salt water from the neighbouring springs.

There are altogether about 270 active volcanos, of which 190 are on the shores and islands of the Pacific. They are generally disposed in lines or groups. The chain of the Andes furnishes a magnificent example of linear volcanos. The peak of Teneriffe, encompassed by the volcanic islands of Palma and Lancerote, is an equally good specimen of a central group. Eruptions are much more frequent in low than in high volcanos: that in the island of Stromboli is in perpetual activity; whereas Cotopaxi, 18,775 feet high, and Tungaragua in the Andes, have only been active once in a hundred years. On account of the force requisite to raise lava to such great elevations, it rarely flows from very elevated cones. Antisana is the only instance to the contrary among all the lofty volcanos in Quito. In Etna also the pressure is so great that the lava forces its way through the sides of the mountain or at the base of the cone.

An explosion begins by a dense volume of smoke issuing from the crater, mixed with aqueous vapour and gases; then masses of rock and molten matter in a half-fluid state are ejected with tremendous explosion and violence; after which lava begins to flow, and the whole terminates by a shower of ashes from the crater—often the most formidable part of the phenomenon, as was experienced at the destruction of Pompeii. There are several volcanos which eject only streams of boiling water, as the Volcano de Agua in Guatemala; others pour forth boiling mud, as in the islands of Trinidad, Java, and Cheduba in the Bay of Bengal. A more feeble effort of the volcanic force appears in the numerous solfataras. Hot springs show that the volcanic fire is not extinguished, though not otherwise apparent. To these may be added acidulous springs, those of naphtha, petroleum, and various kinds of gas, as carbonic acid gas, the food of plants—and, when breathed, the destruction of animals, as is fearfully seen in the Guero Upas, or “Valley of Death,” in Java: it is half a mile in circumference, and about 35 feet deep, with a few large stones, and not a vestige of vegetation on the bottom, which is covered with the skeletons of human beings and the bones of animals and birds blanched white as ivory. On approaching the edge of the valley, which is situate on the top of a hill, a nauseous sickening sensation is felt; and nothing that has life can enter its precincts without being immediately suffocated.[85]

The seat of activity has been perpetually changing, but there always has been volcanic action, possibly more intense in former times, but even at present it extends from pole to pole.

Notwithstanding the numerous volcanic vents in the globe, many places are subject to violent earthquakes, which ruin the works of man, and often change the configuration of the country. The most extensive district of earthquakes comprises the Mediterranean and the adjacent countries, Asia Minor, the Caspian Sea, Caucasus, and the Persian mountains. It joins a vast volcanic district in Central Asia, whose chief focus seems to be the Thean-Tchan, which includes Lake Baikal and the neighbouring regions. A great part of the continent of Asia is more or less subject to shocks: but, with the exception of the shores of the Red Sea and the northern parts of Barbary, Africa is entirely free from these tremendous scourges; and it is singular that, notwithstanding the terrible earthquakes which shake the countries west of the Andes, the Andean chain itself, and all the countries round the Gulf of Mexico and the Caribbean Sea, they are extremely rare in the great eastern plains of South America. For the most part the shocks are transmitted in the line of the primary mountain-chains, and seem often to be limited by them in the other direction.

There must be some singular volcanic action underneath part of Great Britain, which has occasioned 255 slight shocks of earthquake, of which 139 took place in Scotland: the most violent of them have been felt at Comre, in Stratherne; of the rest 14 took place on the borders of Yorkshire and Derbyshire, 30 in Wales, and 31 on the south coast of England: they were preceded by singular phenomena, as a sudden fall of the barometer, fogs, and unusual sultriness; the two latter are said to indicate these convulsions about Siena, and in the Maremma of Tuscany, where they have of late years been attended with very disastrous effects.

Earthquakes are probably produced by fractures and sudden heavings and subsidences in the elastic crust of the globe, from the pressure of the liquid fire, vapour, and gases in its interior, which there find vent, relieve the tension which the strata acquire during their slow refrigeration, and restore equilibrium. But whether the initial impulse be eruptive, or a sudden pressure upwards, the shock originating in that point is propagated through the elastic surface of the earth in a series of circular or oval undulations, similar to those produced by dropping a stone into a pool, and like them they become broader and lower as the distance increases, till they gradually subside; in this manner the shock travels through the land, becoming weaker and weaker till it terminates. When the impulse begins in the interior of a continent, the elastic wave is propagated through the solid crust of the earth, as well as in sound through the air, and is transmitted from the former to the ocean, where it is finally spent and lost, or, if very powerful, is continued in the opposite land. Almost all the great earthquakes, however, have their origin in the bed of the ocean, far from land, whence the shocks travel in undulations to the surrounding shores.

No doubt many of small intensity are imperceptible: it is only the violent efforts of the internal forces that can overcome the pressure of the ocean’s bed, and that of the superincumbent water. The internal pressure is supposed to find relief most readily in a belt of great breadth that surrounds the land at a considerable distance from the coast, and being formed of the dÉbris, the internal temperature is in a perpetual state of fluctuation, which would seem to give rise to sudden flexures and submarine eruptions.

When the original impulse is a fracture or eruption of lava in the bed of the deep ocean, two kinds of waves or undulations are produced and propagated simultaneously—one through the bed of the ocean, which is the true earthquake shock, and coincident with this a wave is formed and propagated on the surface of the ocean, which rolls to the shore, and reaches it in time to complete the destruction long after the shock or wave through the solid ocean-bed has arrived and spent itself on the land. The sea rose 50 feet at Lisbon and 60 at Cadiz after the great earthquake; it rose and fell 18 times at Tangier on the coast of Africa, and 15 times at Funchal in Madeira. At Kinsale in Ireland a body of water rushed into the harbour, and the water in Loch Lomond in Scotland rose two feet four inches—so extensive was the oceanic wave.[86] The height to which the surface of the ground is elevated, or the vertical height of the shock-wave, varies from one inch to two or three feet. This earth-wave, on passing under deep water, is imperceptible, but when it comes to soundings it carries with it to the land a long, flat, aqueous wave; on arriving at the beach, the water drops in arrear from the superior velocity of the shock, so that at that moment the sea seems to recede before the great ocean-wave arrives.

It is the small forced wave that gives the shock to ships, and not the great wave; but when ships are struck in very deep water, the centre of disturbance is either immediately under, or very nearly under, the vessel.

Three other series of undulations are formed simultaneously with the preceding, by which the sound of the explosion is conveyed through the earth, the ocean, and the air, with different velocities. That through the earth travels at the rate of from 7000 to 10,000 feet in a second in hard rock, and somewhat less in looser materials, and arrives at the coast a short time before, or at the same moment with, the shock, and produces the hollow sounds that are the harbingers of ruin; then follows a continuous succession of sounds, like the rolling of distant thunder, formed, first, by the wave that is propagated through the water of the sea, which travels at the rate of 4700 feet in a second, and, lastly, by that passing through the air, which only takes place when the origin of the earthquake is a submarine explosion, and travels with a velocity of 1123 feet in a second. The rolling sounds precede the arrival of the great wave on the coasts, and are continued after the terrific catastrophe when the eruption is extensive.

When there is a succession of shocks all the phenomena are repeated. Sounds sometimes occur when there is no earthquake: they were heard on the plains of the Rio Apure, in Caraccas, at the moment the volcano in St. Vincent’s, 700 miles off, discharged a stream of lava. The bellowings of Guanaxuato afford a singular instance: these subterraneous noises have been heard for a month uninterruptedly when there was no earthquake felt on the table-land of Mexico, nor in the rich silver-mines 1600 feet below its surface.

The velocity of the great oceanic wave varies as the square root of the depth; it consequently has a rapid progress through deep water, and less when it comes to soundings. That raised during the earthquake at Lisbon travelled to Barbadoes at the rate of 7·8 miles in a minute, and to Portsmouth at the rate of a little more than two miles in a minute. The velocity of the shock varies with the elasticity of the strata it passes through. The undulations of the earth are subject to the same laws as those of light and sound; hence, when the shock or earth-wave passes through strata of different elasticity, it will partly be reflected, and a wave will be sent back, producing a shock in a contrary direction, and partly refracted, or its course changed, so that shocks will occur both upwards and downwards, to the right or to the left of the original line of transit. Hence, most damage is done at the junction of deep alluvial plains with the hard strata of the mountains, as in the great earthquake in Calabria in the year 1783.

When the height of the undulations is small, the earthquake will be a horizontal motion, which is the least destructive; when the height is great, the central and horizontal motions are combined, and the effect is terrible. The concussion was upwards in the earthquake which took place at Riobamba in 1797. Baron Humboldt mentions that some of the inhabitants were thrown across a river, several hundred feet in height, on a neighbouring mountain. The worst of all is a vorticose or twisting motion, which nothing can resist; it is occasioned by the crossing of two waves of horizontal vibration, which unite at their point of intersection and form a rotatory movement. This, and the interferences of shocks arriving at the same point from different origins or routes of different lengths, account for the repose in some places, and those extraordinary phenomena that took place during the earthquake of 1783 in Calabria, where the shock diverged on all sides from a centre through a highly elastic base covered with alluvial soil, which was tossed about in every direction. The dynamics of earthquakes are ably discussed by Mr. Mallet in a very interesting paper in the “Transactions of the Royal Irish Academy.”

There are few places where the earth is long at rest, for, independently of those secular elevations and subsidences that are in progress over such extensive tracts of country, small earthquake-shocks must be much more frequent than we imagine, though imperceptible to our senses, and only to be detected by means of instruments. The shock of an earthquake at Lyons in February, 1822, was not generally perceptible at Paris, yet the wave reached and passed under that city, and was detected by the swinging of the large declination needle at the Observatory, which had previously been at rest.

The undulations of some of the great earthquakes have spread to an enormous extent. The earthquake that happened in 1842 in Guadaloupe was felt over an extent of 3000 miles in length; and that which destroyed Lisbon had its origin in the bed of the Atlantic, from whence the shock extended over an area of about 700,000 square miles, or a twelfth part of the circumference of the globe; the West Indian islands, and the lakes in Scotland, Norway, and Sweden were agitated by it. In linear distance the effects of that earthquake extended through 300 miles, the shocks were felt through a line of 2700 miles, and the vibrations or tremors were perceptible in water through 4000 miles. It began without warning, and in five minutes the city was a heap of ruins.

The earthquake of 1783, in Calabria, which completely changed the face of the country, only lasted two minutes; but it was not very extensive, yet all the towns and villages for 22 miles round the small town of Oppido were utterly ruined. The destruction is generally accomplished in a fearfully short time; the earthquake at Caraccas, in March 1812, consisted of three shocks, which lasted three or four seconds, separated by such short intervals that in 50 seconds 10,000 people perished. Baron Humboldt’s works are full of interesting details on this subject, especially with regard to the tremendous convulsions in South America.

Sometimes a shock has been perceived under-ground which was not felt at the surface, as in the year 1802, in the silver-mine of Marienberg, in the Hartz. In some instances miners have been insensible to shocks felt on the surface above, which happened at Fahlun, in Sweden, in 1823—circumstances in both instances depending on the elasticity of the strata, the depth of the impulses, or obstacles that may have changed the course of the terrestrial undulation. During earthquakes dislocations of strata take place, the course of rivers is changed, and in some instances they have been permanently dried up, rocks are hurled down, masses raised up, and the configuration of the country altered; but if there be no fracture at the point of original impulse, there will be no noise.

The power of the earthquake in raising and depressing the land has long been well known, but the gradual and almost imperceptible change of level through immense tracts of the globe is altogether a recent discovery; it has been ascribed to the expansion of rocks by heat, and subsequent contraction by the retreat of the melted matter from below them. It is not at all improbable that there may be motions, like tides, ebbing and flowing in the internal lava, for the changes are by no means confined to those enormous elevations and subsidences that appear to be in progress in the basin of the Pacific and its coasts, nor to the Andes and the great plains east of them—countries for the most part subject to earthquakes; they take place, to a vast extent, in regions where these convulsions are unknown. There seems to be an extraordinary flexibility in the crust of the globe from the 54th or 55th parallel of north latitude to the Arctic Ocean. There is a line crossing Sweden from east to west in the parallel of 56° 3' N. lat., along which the ground is perfectly stable, and has been so for centuries. To the north of it for 1000 miles, between Gottenburg and North Cape, the ground is rising, the maximum elevation, which takes place at North Cape, being at the rate of five feet in a century, from whence it gradually diminishes to three inches in a century at Stockholm. South of the line of stability, on the contrary, the land is sinking through part of Christianstad and Malmo, for the village of Stassten in Scania is now 380 feet nearer to the Baltic than it was in the time of LinnÆus, by whom it was measured 87 years ago. The coast of Denmark on the sound, the island of Saltholm, opposite to Copenhagen, and that of Bornholm are rising, the latter at the rate of a foot in a century. The coast of Memel on the Baltic has actually risen a foot and four inches within the last 30 years, while the coast of Pillau has sunk down an inch and a half in the same period. The west coast of Denmark, part of the Feroe Islands, and the west coast of Greenland are all being depressed below their former level. In Greenland, the encroachment of the sea, in consequence of the change of level, has submerged ancient buildings on the low rocky islands, and on the main land. The Greenlander never builds near the sea on that account, and the Moravian settlers have had to move inland the poles to which they moor their boats. It has been in progress for four centuries, and extends through 600 miles from Igalito Firth to Disco Bay.[87] Mr. Robert Chambers has shown that in our own country the land has been for ages on the rise, and that the parallel roads in Glen Roy, which have so long afforded matter of discussion, are merely margins left by the retreat of the water, as the land alternately rose and remained stationary. In the present day the elevation is going on in many places, especially on the Murray Firth and in the Channel islands. The notice of this curious subject of the gradual changes of level on the land has been chiefly revived by Sir Charles Lyell, in whose admirable works on geology all the details will be found.[88]

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page