CHAPTER I. GEOLOGY.

Previous

Of Physical Geography—Position of the Earth in the Solar System—Distance from the Sun—Civil Year—Inclination of Terrestrial Orbit—Mass of the Sun—Distance of the Moon—Figure and Density of the Earth from the Motions of the Moon—Figure of the Earth from Arcs of the Meridian—from Oscillations of Pendulum—Local Disturbances—Mean Density of the Earth—Known Depth below its Surface—Outlines of Geology.

Physical Geography is a description of the earth, the sea, and the air, with their inhabitants animal and vegetable, of the distribution of these organized beings, and the causes of that distribution. Political and arbitrary divisions are disregarded, the sea and the land are considered only with respect to those great features that have been stamped upon them by the hand of the Almighty, and man himself is viewed but as a fellow-inhabitant of the globe with other created things, yet influencing them to a certain extent by his actions, and influenced in return. The effects of his intellectual superiority on the inferior animals, and even on his own condition by the subjection of some of the most powerful agents in nature to his will, together with the other causes which have had the greatest influence on his physical and moral state, are among the most important subjects of this science.

The former state of our terrestrial habitation, the successive convulsions which have ultimately led to its present geographical arrangement, and to the actual distribution of land and water, so powerfully influential on the destinies of mankind, are circumstances of primary importance.

The position of the earth with regard to the sun, and its connection with the bodies of the solar system, have been noticed by the author elsewhere. It was there shown that our globe forms but an atom in the immensity of space, utterly invisible from the nearest fixed star, and scarcely a telescopic object to the remote planets of our system. The increase of temperature with the depth below the surface of the earth, and the tremendous desolation hurled over wide regions by numerous fire-breathing mountains, show that man is removed but a few miles from immense lakes or seas of liquid fire. The very shell on which he stands is unstable under his feet, not only from those temporary convulsions that seem to shake the globe to its centre, but from a slow almost imperceptible elevation in some places, and an equally gentle subsidence in others, as if the internal molten matter were subject to secular tides, now heaving and now ebbing, or that the subjacent rocks were in one place expanded and in another contracted by changes of temperature.

The earthquake and the torrent, the august and terrible ministers of Almighty Power, have torn the solid earth and opened the seals of the most ancient records of creation, written in indelible characters on the “perpetual hills and the everlasting mountains.” There we read of the changes that have brought the rude mass to its present fair state, and of the myriads of beings that have appeared on this mortal stage, have fulfilled their destinies, and have been swept from existence to make way for new races, which, in their turn, have vanished from the scene, till the creation of man completed the glorious work. Who shall define the periods of those mornings and evenings when God saw that his work was good? and who shall declare the time allotted to the human race, when the generations of the most insignificant insect existed for unnumbered ages? Yet man is also to vanish in the ever-changing course of events. The earth is to be burnt up, and the elements are to melt with fervent heat—to be again reduced to chaos—possibly to be renovated and adorned for other races of beings. These stupendous changes may be but cycles in those great laws of the universe, where all is variable but the laws themselves, and He who has ordained them.

The earth is one of seventeen planets which revolve about the sun in elliptical orbits: of these, twelve have been discovered since the year 1787.[3] Mercury and Venus are nearer the sun than the earth, the others are more remote. The earth revolves at a mean distance of 95,000,000 miles from the sun’s centre, in a civil year of 365 days 5 hours 48 minutes 49·7 seconds, at the same time that it rotates in 24 hours about an axis which always remains parallel to itself, and inclined at an angle of 23° 27' 34·69 to the plane of the ecliptic; consequently, the days and nights are of equal length at the equator, from whence their length progressively differs more and more as the latitude increases, till at each pole alternately there is perpetual day for six months, and a night of the same duration: thus the light and heat are very unequally distributed, and both are modified by the atmosphere by which the earth is encompassed to the height of about forty miles.

With regard to magnitude, Mars, Jupiter, Saturn, Uranus, and Neptune are larger than the earth, the rest are smaller, but even the largest is incomparably inferior to the sun in size: his mass is 354,936 times greater than that of the earth, but the earth is nearly four times as dense.

Though the planets disturb the earth in its motion, their form has no effect on account of their great distance; but it is otherwise with regard to the moon, which revolves about the earth at a mean distance of 240,000 miles, and is therefore so near that the form of both bodies causes mutual disturbances in their respective motions. The perturbations in the moon’s motions from that cause, compared with the same computed from theory, show that the earth is not a perfect sphere, but that it bulges at the equator, and is flattened at the poles: it even gives a value of the compression or flattening.[4] Again, theory shows that, if the earth were throughout of the same density, it would be much less flat at the poles than the moon’s motions show it to be, but that it would be very nearly the same were the earth to increase regularly in density from the surface to its centre; and thus the lunar motions not only make known the form, but reveal the internal structure of the globe. Actual measurement has proved the truth of these results.

The courses of the great rivers, which are generally navigable to a considerable extent, show that the curvature of the land differs but little from that of the ocean; and as the heights of the mountains and continents are inconsiderable when compared with the magnitude of the earth, its figure is understood to be determined by a surface at every point perpendicular to the direction of gravitation, or of the plumb-line, and is the same which the sea would have if it were continued all round the earth beneath the continents. Such is the figure that has been measured in various parts of the globe.

A terrestrial meridian is a line passing through both poles, all the points of which have their noon contemporaneously, and a degree of a meridian is its 360th part. Now, if the earth were a sphere, all degrees would be of the same length; but, as it is flattened at the poles, the degrees are longest there, and decrease in length to the equator, where they are least. The form and size of the earth may therefore be determined by comparing the length of degrees in different latitudes.[5] Eleven arcs have been measured in Europe, one in Peru, and two in the East Indies; but a comparison of no two gives the same result, which shows that the earth has a slightly irregular form. From a mean of ten of these arcs, M. Bessel found that the equatorial radius of the earth is 3963·025 miles, and the polar radius 3949·8 miles nearly. Whence, assuming the earth to be a sphere, the length of a mean degree of the meridian is 69·05 British statute miles; therefore 360 degrees, or the whole circumference of the globe, is 24,858 miles; the diameter, which is something less than a third of the circumference, is about 8286, or 8000 statute miles; and the length of a geographical mile of 60 to a degree is 6086·76 feet. The breadth of the torrid zone is 705 geographical miles, the breadth of each of the temperate zones is 645 miles, and that of each of the spaces within the arctic and antarctic circles 11,431 miles nearly. The Astronomer Royal Mr. Airy’s results, obtained ten years afterwards, only differ from those of M. Bessel by 127 feet in the equatorial, and 138 feet in the polar radius, quantities not greater than the length of a ball-room. In consequence of the round form of the earth, the dip or depression of the horizon is a fathom for every three miles of distance; that is to say, an object a fathom or six feet high would be hid by the curvature of the earth at the distance of three miles. Since the dip increases as the square, a hill 100 fathoms high, would be hid at the distance of ten miles, and the top of Dhawalagori, the culminating point of the Himalaya, 28,000 feet high, would be seen to sink beneath the horizon by a person about 167 miles off; thus, when the height is known, an estimate can be formed of the distance of a mountain.

The oscillations of the pendulum have afforded another method of ascertaining the form of the earth. Like all heavy bodies, its descent, and consequently its oscillations, are accelerated in proportion to the force of gravitation, which increases from the equator to the poles. In order, therefore, that the oscillations may be everywhere performed in the same time, the length of the pendulum must be increased progressively in going from the equator to the poles, according to a known law,[6] from whence the compression or flattening at the poles may be deduced. Experiments for that purpose have been made in a great number of places, but, as in the measurement of the arcs, no two sets give exactly the same results; the mean of the whole, however, differs very little from that given by the degrees of the meridian and the perturbations of the moon; and as the three methods are so entirely independent of each other, the figure and dimensions of the earth may be considered to be known. The sea has little effect on these experiments, both because its mean density is less than that of the earth, and that its mean depth of perhaps four miles is inconsiderable when compared with 4000 miles, the mean terrestrial radius.[7]

The discrepancies in the results, from the comparison of the different sets of pendulum experiments, and also of degrees of the meridian, arise from local attraction, as well as from irregularities in the form of the earth. These attractions, arising from dense masses of rock in mountains, cause the plumb-line to deviate from the vertical, and when under ground they alter the oscillations of the pendulum. Colonel Sabine, who made experiments with the pendulum from the equator to within ten degrees of the north pole, discovered that the intensity is greatly augmented by volcanic islands. A variation to the amount of a tenth of a second in twenty-fours can be perfectly ascertained in the rate of the pendulum, but from some of these local attractions a variation of nearly ten seconds has occurred during the same period. The islands of St. Helena, Ascension, St. Thomas, the Isle of France, are some of those noted by Colonel Sabine.

There are other remarkable instances of local disturbance, arising from the geological nature of the soil; for example, the intensity of gravitation is very small at Bordeaux, from whence it increases rapidly to Clermont-Ferrand, Milan, and Padua, where it attains a maximum (owing probably to dense masses of rock under ground), and from thence it extends to Parma. In consequence of this local attraction, the degrees of the meridian in that part of Italy seem to increase towards the equator through a small space, instead of decreasing, as if the earth were drawn out instead of flattened at the poles.

It appears from this that the effect of the whole earth on a pendulum or torsion balance may be compared with the effect of a small part of it, and thus a comparison maybe instituted between the mass of the earth and the mass of that part of it. Now, a leaden ball was weighed against the earth by comparing the effects of each upon a balance of torsion; the nearness of the smaller mass making it produce a sensible effect as compared with that of the larger, for by the laws of attraction the whole earth must be considered as collected in its centre; in this manner a value of the mass of the earth was obtained, and, as its volume was known, its mean density was found to be 5·675 times greater than that of water at the temperature of 62° of Fahrenheit’s thermometer. Now, as that mean density is double that of basalt, and more than double that of granite, rocks which undoubtedly emanate from very great depths beneath the surface of the earth, it affords another proof of the increase in density towards the earth’s centre. These experiments were first made by Mr. Cavendish and Mitchell, and latterly with much greater accuracy by M. Baily, who devoted four years of unremitted attention to the accomplishment of this important and difficult object.[8]

Although the earth increases in density regularly from the surface to the centre, as might naturally be expected from the increasing pressure, yet the surface consists of a great variety of substances of different densities, some of which occur in amorphous masses; others are disposed in regular layers or strata, either horizontal or inclined at all angles to the horizon. By mining, man has penetrated only a very little way; but by reasoning from the dip or inclination of the strata at or near the surface, and from other circumstances, he has obtained a pretty accurate idea of the structure of our globe to the depth of about ten miles. All the substances of which we have any information are divided into four classes, distinguished by the manner in which they have been formed: namely,—plutonic and volcanic rocks, both of igneous origin, though produced under different circumstances; aqueous or stratified rocks, entirely due to the action of water, as the name implies; and metamorphic rocks, deposited by water, according to the opinion of many eminent geologists, and consequently stratified, but subsequently altered and crystallized by heat. The aqueous and volcanic rocks are formed at the surface of the earth, the plutonic and metamorphic at great depths; but all of them have originated simultaneously during every geological period, and are now in a state of slow and constant progress. The antagonist principles of fire and water have ever been and still are the cause of the perpetual vicissitudes to which the crust of the earth is liable.

It has been ascertained by observation that the plutonic rocks, consisting of the granites and some of the porphyries, were formed in the deep and fiery caverns of the earth, of melted matter, which crystallized as it slowly cooled under enormous pressure, and was then heaved up in unstratified masses by the elastic force of the internal heat even to the tops of highest mountains, or forced in a semi-fluid state into fissures of the superincumbent strata, sometimes into the cracks of the previously formed granite: for that rock, which constitutes the base of so large a portion of the earth’s crust, has not been all formed at once; some portions had been solid, while others were yet in a liquid state. This class of rocks is completely destitute of fossil remains.

Although granite and the volcanic rocks are both due to the action of fire, their nature and position are very different; granite, fused in the interior of the earth, has been cooled and consolidated before coming to the surface; besides, it generally consists of few ingredients, so that it has nearly the same character in all countries. But as the volcanic fire rises to the very surface of the earth, fusing whatever it meets with, volcanic rocks take various forms, not only from the different kinds of strata which are melted, but from the different conditions under which the liquid matter has been cooled, though most frequently on the surface—a circumstance that seems to have had the greatest effect on its appearance and structure. Sometimes it approaches so nearly to granite that it is difficult to perceive a distinction; at other times it becomes glass; in short, all those massive, unstratified, and occasionally columnar rocks, as basalt, greenstone, porphyry, and serpentine, are due to volcanic fires, and are devoid of fossil remains.

There seems scarcely to have been any age of the world in which volcanic eruptions have not taken place in some part of the globe. Lava has pierced through every description of rocks, spread over the surface of those existing at the time, filled their crevices, and flowed between their strata. Ever changing its place of action, it has burst out at the bottom of the sea as well as on dry land. Enormous quantities of scoriÆ and ashes have been ejected from numberless craters, and have formed extensive deposits in the sea, in lakes, and on the land, in which are embedded the remains of the animals and vegetables of the epoch. Some of these deposits have become hard rock, others remain in a crumbling state; and as they alternate with the aqueous strata of almost every period, they contain the fossils of all the geological epochs, chiefly fresh and salt water testaceÆ.

According to a theory now generally adopted, which originated with Sir Charles Lyell, whose works are models of philosophical investigation, the metamorphic rocks, which consist of gneiss, micaschist, clay-slate, statuary marble, &c., were formed of the sediment of water in regular layers, differing in kind and colour, but, having been deposited near the place where plutonic rocks were generated, they have been changed by the heat transmitted from the fused matter, and, in cooling under heavy pressure and at great depths, they have become as highly crystallized as the granite itself, without losing their stratified form. An earthy stratum has sometimes been changed into a highly crystallized rock, to the distance of a quarter of a mile from the point of contact, by transmitted heat; and there are instances of dark-coloured limestone, full of fossil shells, that has been changed into statuary marble from that cause. Such alterations may frequently be seen to a small extent on rocks adjacent to a stream of lava. There is seldom a trace of organic remains in the metamorphic rocks; their strata are sometimes horizontal, but they are usually tilted at all angles to the horizon, and form some of the highest mountains and most extensive table-lands on the face of the globe. Although there is the greatest similarity in the plutonic rocks in all parts of the world, they are by no means identical; they differ in colour, and even in ingredients, though these are few.

Aqueous rocks are all stratified, being the sedimentary deposits of water. They originate in the wear of the land by rain, streams, or the ocean. The dÉbris carried by running water is deposited at the bottom of the seas and lakes, where it is consolidated, and then raised up by subterraneous forces, again to undergo the same process after a lapse of time. By the wasting away of the land the lower rocks are laid bare, and, as the materials are deposited in different places according to their weight, the strata are exceedingly varied, but consist chiefly of arenaceous or sandstone rocks, composed of sand, clay, and carbonate of lime. They constitute three great classes, which, in an ascending order, are the primary and secondary fossiliferous strata and the tertiary formations.

The primary fossiliferous strata, the most ancient of all the sedimentary rocks, consisting of limestone, sandstones, and shales, are entirely of marine origin, having been formed far from land at the bottom of a very deep ocean; consequently, they contain the exuviÆ of marine animals only, and after the lapse of unnumbered ages the ripple-marks of the waves are still distinctly visible on some of their strata. This series of rocks is subdivided into the Cambrian and the upper and lower Silurian systems, on account of differences in their fossil remains.

The Cambrian rocks, sometimes many thousand yards thick, are, for the most part, destitute of organic remains, but the Silurian rocks abound in them more and more as the strata lie higher in the series. In the lower Silurian group are the remains of shell-fish, almost all of extinct genera, and the few that have any affinity to those alive are of extinct species; crinoidea, or stone lilies, which had been fixed to the rocks like tulips on their stems, are coËval with the earliest inhabitants of the deep; and the trilobite, a jointed creature of the crab kind, with prominent eyes, are almost exclusively confined to the Silurian strata, but the last traces of them are found in the coal-measures above. In the upper Silurian group are abundance of marine shells of almost every order, together with crinoidea, vast quantities of corals, and some sea-weeds: several fossil sauroid fishes, of extinct genera, but high organization, have been found in the highest beds—the only vertebrated animals that have yet been discovered among the countless profusion of the lower orders of creatures that are entombed in the primary fossiliferous strata. The remains of one or more land plants, in a very imperfect state, have been found in the Silurian rocks of North America, which shows that there had been land with vegetation at that early period. The type of these plants, as well as the size of the shells and the quantity of the coral, indicate that a uniformly warm temperature had then prevailed over the globe. During the Silurian period an ocean covered the northern hemisphere, islands and lands of moderate size had just begun to rise, and earthquakes, with volcanic eruptions from insular and submarine volcanos, were frequent towards its close.

The secondary fossiliferous strata, which comprise a great geological period, and constitute the principal part of the high land of Europe, were deposited at the bottom of an ocean, like the primary, from the dÉbris of all the others, carried down by water, and still bear innumerable tokens of their marine origin, although they have for ages formed a part of the dry land. Calcareous rocks are more abundant in these strata than in the crystalline, probably because the carbonic acid was then, as it still is, driven off from the lower strata by the internal heat, and came to the surface as gas or in calcareous springs, which either rose in the sea and furnished materials for shell-fish and coral insects to build their habitations and form coral-reefs, or deposited their calcareous matter on the land in the form of rocks.

The Devonian or old red sandstone group, in many places 10,000 feet thick, consisting of strata of dark red and other sandstones, marls, coralline limestones, conglomerates, &c., is the lowest of the secondary fossiliferous strata, and forms a link between them and the Silurian rocks, by an analogy in their fossil remains. It has fossils peculiarly its own, but it has also some shells and corals common to the strata both above and below it. There are various families of extinct sauroid fishes in this group, some of which were gigantic, others had strong bony shields on their heads, and one genus, covered with enamelled scales, had appendages like wings. The shark approaches nearer to some of these ancient fish than any other now living.

During the long period of perfect tranquility that prevailed after the Devonian group was deposited, a very warm, moist, and extremely equable climate, which extended all over the globe, had clothed the islands and lands in the ocean then covering the northern hemisphere with exuberant tropical forests and jungles. Subsequent inroads of fresh water, or of the sea, or rather partial sinkings of the land, had submerged these forests and jungles, which, being mixed with layers of sand and mud, had in time been consolidated into one mass, and were then either left dry by the retreat of the waters or gently raised above their surface.

These constitute the remarkable group of the carboniferous strata, which consists of numberless layers of various substances filled with a prodigious quantity of the remains of fossil land-plants, intermixed with beds of coal, which is entirely composed of vegetable matter. In some cases, the plants appear to have been carried down by floods, and deposited in estuaries; but in most instances the beauty, delicacy, and sharpness of the impressions show that they had grown on the spot where the coal was formed. More than 300 fossil plants have been collected from the strata where they abound, frequently with their seeds and fruits, so that enough remains to show the peculiar nature of this flora, whose distinguishing feature is the preponderance of ferns; among these there were tree-ferns which must have been 40 or 50 feet high. There were also plants resembling the horse-tail tribe, of gigantic size, others like the tropical club mosses; an aquatic plant of an extinct family was very abundant, beside many others to which we have nothing analogous. Forest-trees of great magnitude, of the pine and fir tribes, flourished at that period. The remains of an extinct araucaria, one of the largest of the pine family, have been found in the British coal-fields; the existing species now grow in very warm countries; a few rare instances occur of grasses, palms, and liliaceous plants. The botanical districts were very extensive when the coal-plants were growing, for the species are nearly identical throughout the coal-fields of Europe and America. From the extent of the ocean, the insular structure of the land, the profusion of ferns and fir-trees, and the warm, moist, and equable climate, the northern hemisphere during the formation of the coal strata is thought to have borne a strong resemblance to the South Pacific, with its fern and fir clothed lands of New Zealand, Kerguelen islands, and others.

The animal remains of this period are in the mountain limestone, a rock occasionally 900 feet thick, which in some instances lies beneath the coal-measures, and sometimes alternates with the shale and sandstone. They consist of crinoidea and marine testaceÆ, among which the size of the chambered shells, as well as that of the corals, shows that the ocean was very warm at that time, even in the high northern latitudes. The footsteps of a very large reptile of the frog tribe have been found on some of the carboniferous strata of North America.

The coal strata have been very much broken and deranged in many places by earthquakes, which frequently occurred during the secondary fossiliferous period, and from time to time raised islands and land from the deep. However, these and all other changes that have taken place on the earth have been gradual and partial, whether brought about by fire or water. The older rocks are more shattered by earthquakes than the newer, because the movement came from below; but these convulsions have never extended all over the earth at the same time—they have always been local: for example, the Silurian strata have been dislocated and tossed in Britain, while a vast area in the south of Sweden and Russia still retains a horizontal position. There is no proof that any mountain-chain has ever been raised at once; on the contrary, the elevation has always been produced by a long-continued and reiterated succession of internal convulsions with intervals of repose. In many instances the land has risen up or sunk down by an imperceptible equable motion continued for ages, while in other places the surface of the earth has remained stationary for long geological periods.

The magnesian limestone, or permian formation, comes immediately above the coal-measures, and consists of breccias or conglomerates, gypsum, sandstone, marl, &c.; but its distinguishing feature is a yellow limestone rock, containing carbonate of magnesia, which often takes a granular texture, and is then known as dolomite. The permian formation has a fossil flora and fauna peculiar to itself, mingled with those of the coal strata. Here the remnant of an earlier creation gradually tends to its final extinction, and a new one begins to appear. The flora is, in many instances, specifically the same with that in the coal strata below. Certain fish are also common to the two, which never appear again. They belong to a race universal in the early geological periods, and bear a strong resemblance to saurian reptiles. A small number of existing genera only, such as the shark and sturgeon, make some approach to the structure of these ancient inhabitants of the waters. The new creation is marked by the introduction of two species of saurian reptiles; the fossil remains of one have been found in the magnesian limestone in England, and those of the other in a corresponding formation in Germany. They are the earliest members of a family which was to have dominion on the land and water for ages.

A series of red marls, rock-salt, and sandstones, which have arisen from the disintegration of metamorphic slates and porphyritic trap, containing oxide of iron, and known as the trias or new red sandstone system, lies above the magnesian limestone. In England this formation is particularly rich in rocksalt, which, with layers of gypsum and marl, is sometimes 600 feet thick; but in this country the muschelkalk, a peculiar kind of shell limestone, is wanting, which in Germany is so remarkable for the quantity of organic remains. At this time creatures like frogs, of enormous dimensions, had been frequent, as they have left their footsteps on what must then have been a soft shore. Forty-seven genera of fossil remains have been found in the trias in Germany, consisting of shells, cartilaginous fish, encrinites, &c., all distinct in species, and many distinct in genera, from the organic fossils of the magnesian limestone below, and also from those entombed in the strata above.

During a long period of tranquility the oolite or Jurassic group was next deposited in a sea of variable depth, and consists of sands, sandstones, marls, clays, and limestone. At this time there was a complete change in the aqueous deposits all over Europe. The red iron-stained arenaceous rocks, the black coal, and dark strata, were succeeded by light-blue clays, pale-yellow limestones, and, lastly, white chalk. The water that deposited the strata must have been highly charged with carbonate of lime, since few of the formations of that period are without calcareous matter, and calcareous rocks were formed to a prodigious extent throughout Europe; the Pyrenees, Alps, Apennines, and Balkan abound in them; and the Jura mountains, which have given their name to the series, are formed of them. The European ocean then teemed with animal life; whole beds consist almost entirely of marine shells and corals. Belemnites and ammonites, from an inch in diameter to the size of a cart-wheel, are entombed by myriads in the strata: whole forests of that beautiful zoophyte the stone-lily flourished on the surface of the oolite, then under the waters; and the encrinite, one of the same genus, is embedded in millions in the enchorial shell-marble, which occupies such extensive tracts in Europe. Fossil fish are numerous in these strata, but different from those of the coal series, the permian formation, and trias: not one genus of the fish of this period is now in existence. The newly-raised islands and lands were clothed with vegetation like that of the large islands of the intertropical archipelagos of the present day, which, though less rich than during the carboniferous period, still indicates a very moist and warm climate. Ferns were less abundant, and they were associated with various genera and species of the cicadeÆ, which had grown on the southern coast of England, and in other parts of northern Europe, congeners of the present cycas and zamia of the tropics. These plants had been very numerous, and the pandanÆ, or screw-pine, the first tenant of the new lands in ancient and modern times, is a family found in a fossil state in the inferior oolite of England, which was but just rising from the deep at that time. The species now flourishing grows only on the coasts of such coral islands in the Pacific as have recently emerged from the waves. In the upper strata of this group, however, the confervÆ and monocotyledonous plants become more rare—an indication of a change of climate.

The new lands that were scattered on the ocean of the oolite period were drained by rivers, and inhabited by huge crocodiles and saurian reptiles of gigantic size, mostly of extinct genera. The crocodiles come nearest to modern reptiles; but the others, though bearing a remote similitude in general structure to living forms, were quite anomalous, combining in one the structure of various distinct creatures, and so monstrous that they must have been more like the visions of a troubled dream than things of real existence; yet in organization a few of them came nearer to the type of living mammalia than any existing reptiles do. Some of these had lived in rivers, others in the ocean—some were inhabitants of the land, others were amphibious; and the various species of one genus even had wings like a bat, and fed on insects. There were both herbivorous and predaceous saurians; and from their size and strength they must have been formidable enemies. Besides, the numbers deposited are so great, that they must have swarmed for ages in the estuaries and shallow seas of the period, especially in the lias, a marine stratum of clay, the lowest of the oolite series. They gradually declined towards the end of the secondary fossiliferous epoch; but as a class they lived in all subsequent eras, and still exist in tropical countries, although the species are very different from their ancient congeners. Tortoises of various kinds were contemporary with the saurians, also a family that still exists. In the Stonefield slate, a stratum of the lower oolite group, there are the remains of insects, and the bones of two small quadrupeds have been found there belonging to the marsupial tribe, such as the opossum—a very remarkable circumstance, because that family of animals at the present time is confined to New Holland, South America, and as far north as Pennsylvania at least. The great changes in animal life during this period were indications of the successive alterations that had taken place on the earth’s surface.

The cretaceous strata follow the oolite in ascending order, consisting of clay, green and iron sands, blue limestone, and chalk, probably formed of the decay of coral and shells, which predominates so much in England and other parts of Europe, that it has given the name and its peculiar feature to the whole group. It is, however, by no means universal; the chalk is wanting in many parts of the world where the other strata of this series prevail, and then their connection with the group can only be ascertained by the identity of their fossil remains. With the exception of some beds of coal among the oolitic series, the Wealden clay, the lowest of the cretaceous group in England, is the only fresh-water formation, and the tropical character of its flora shows that the climate was still very warm. Plants allied to the zamias and cycades of our tropical regions, many ferns and pines of the genus araucaria, characterized its vegetation, and the upright stems of a fossil forest at Portland show that it had been covered with trees. It was inhabited by tortoises approaching to families now living in warm countries, and saurian reptiles of five different genera swarmed in the lakes and estuaries. This clay contains fresh-water shells and fish of the carp kind. The Wealden clay is one of the various instances of the subsidence of land which took place during this period.

The cretaceous strata above our Wealden clay are full of marine exuviÆ. There are vast tracts of sand in Northern Europe, and many very extensive tracts of chalk; but in the southern part of the Continent the cretaceous rocks assume a different character. There and elsewhere extensive limestone rocks, filled with very peculiar shells, show that, when the cretaceous strata were forming, an ocean extended from the Atlantic into Asia, which covered the south of France, all Southern Europe, part of Syria, the isles of the Ægean Sea, the coasts of Thrace and the Troad. The remains of turtles have been found in the cretaceous group, quantities of coral, and abundance of shells of extinct species; some of the older kinds still existed, new ones were introduced, and some of the most minute species of microscopic shells, which constitute a large portion of the chalk, are supposed to be the same with creatures now alive, the first instance of identity of species in the ancient and modern creation. An approximation to recent times is to be observed also in the arrangement of organized nature, since at this early period, and even in the Silurian and oolitic epochs, the marine fauna was divided, as now, into distinct geographical provinces. The great saurians were on the decline, and many of them were found no more, but a gigantic creature, intermediate between the monitor and iguana, lived at this period. From the permian group to the chalk inclusive, only two instances of fossil birds occur, one in a chalk deposit in the Swiss Alps, and the other a kind of albatross in the chalk in England; in North America, however, the foot-marks of a variety of birds have been found in the strata between the coal and lias, some of which are larger than those of the ostrich.

An immense geological cycle elapsed between the termination of the secondary fossiliferous strata and the beginning of the tertiary. With the latter a new order of things commenced, approaching more closely to the actual state of the globe. During the tertiary formation the same causes under new circumstances produced an infinite variety in the order and kind of the strata, accompanied by a corresponding change in the animal and vegetable life. The old creation, which had nothing in common with the existing order of things, had passed away and given place to one more nearly approaching to that which now prevails. Among the myriads of beings that inhabited the earth and the ocean during the secondary fossiliferous epoch, scarcely one species is to be found in the tertiary. Two planets could hardly differ more in their natural productions. This break in the law of continuity is the more remarkable, as hitherto some of the newly-created animals were always introduced before the older were extinguished. The circumstances and climate suited to the one became more and more unfit for the other, which consequently perished gradually, while their successors increased. It is possible that, as observations become more extended, this hiatus maybe filled up.

The series of rocks, from the granite to the end of the secondary fossiliferous strata, taken as a whole, constitute the solid crust of the globe, and in that sense are universally diffused over the earth’s surface. The tertiary strata occupy the hollows formed in this crust, whether by subterraneous movements, by lakes, or denudation by water, as in the estuaries of rivers, and consequently occur in irregular tracts, often, however, of prodigious thickness and extent. Indeed, they seem to have been as widely developed as any other formation, though time has been wanting to bring them into view.

The innumerable basins and hollows with which the continents and larger islands had been indented for ages after the termination of the secondary fossiliferous series had sometimes been fresh-water lakes, and at other times inundated by the sea; consequently, the deposits which took place during these changes alternately contain the spoils of terrestrial and marine animals. The frequent intrusion of volcanic strata among the tertiary formations shows that, in Europe, the earth had been in a very disturbed state, and that these repeated vicissitudes had been occasioned by elevations and depressions of the soil, as well as by the action of water.

There are three distinct groups in these strata: the lowest tertiary or Eocene group, so called by Sir Charles Lyell, because, among the myriads of fossil shell-fish it contains, very few are identical with those now living; the Miocene, or middle group, has a greater number of the exuviÆ of existing species of shells; and the Pleiocene, or upper tertiary group, still more. Though frequently heaved up to great elevations on the flanks of the mountain-chains, as, for example, on the Alps and Apennines, by far the greater part of the tertiary strata maintain their original horizontal position in the very places where they were formed. Immense insulated deposits of this kind are to be met with all over the world; Europe abounds with them, London, Paris, and Vienna stand on such basins, and they cover immense tracts both in North and South America.

The monstrous reptiles had mostly disappeared, and the mammalia now took possession of the earth, of forms scarcely less anomalous than their predecessors, though approaching more nearly to those now living.

Numerous species of extinct animals that lived during the earliest or Eocene period have been found in various parts of the world, especially in the Paris basin, of the order of Pachydermata, to the greater number of which we have nothing analogous; they were mostly herbivorous quadrupeds, which had frequented the borders of the rivers and lakes that covered the greater part of Europe at that time. This is the more extraordinary, as existing animals most similar to these, the tapirs for instance, are confined to the torrid zone. These creatures were widely diffused, and some of them were associated with genera still existing, though of totally different species; such as animals allied to the racoon and dormouse, the ox, bear, deer, the fox, the dog, and others. Although these quadrupeds differ so widely from those of the present day, the same proportion existed then as now between the carnivorous and herbivorous genera. The spoils of marine mammalia of this period have also been found, sometimes of great elevations above the sea, all of extinct species, and some of these cetacea were of huge size. This marvellous change of the creative power was not confined to the earth and the ocean; the air also was now occupied by many extinct races of birds allied to the owl, buzzard, quail, curlew, &c. The climate must still have been warmer than at present, from the remains of land and sea plants found in high latitudes. Even in England, bones of the opossum, monkey, and boa have been discovered, all animals of warm countries, besides fossil sword and saw fish, both of genera foreign to the British seas.

During the Miocene period, new amphibious quadrupeds were associated with the old, of which the deinotherium is the most characteristic and much the largest of the mammalia yet found, far surpassing the largest elephant in size, of a singular form, and unknown nature.

The palÆotherium was of this period, and also the mastodon, both of large dimensions. Various families, and even genera, of quadrupeds now existing were associated with these extraordinary creatures, though of extinct species, such as the elephant, rhinoceros, hippopotamus, tapir, horse, bear, wolf, hyÆna, weasel, beaver, ox, buffalo, deer, &c.; and also marine mammalia, as dolphins, sea-calves, walruses, and lamantines. Indeed, in the constant increase of animal life manifested throughout the whole of the tertiary strata, the forms approach nearer to living species as their remains lie high in the series.

In the older Pleiocene period some of the large amphibious quadrupeds, and other genera of mammalia of the earlier tertiary periods, appear no more; but there were the mastodon, and the Elephas primigenius or mammoth, some species of which, of prodigious size, were associated with numerous quadrupeds of existing genera, but lost species. Extinct species of almost all the quadrupeds now alive seem to have inhabited the earth at that time; their bones have been discovered in caverns; they were embedded in the breccias and in most of the strata of that epoch—as the hippopotamus, rhinoceros, elephant, horse, bear, wolf, water-rat, hyÆna, and various birds. It is remarkable that in the caverns of Australia the fossil bones all belong to extinct species of gigantic kangaroos and wombats, animals belonging to the marsupial family, which are so peculiarly the inhabitants of that country at the present day, but of diminished size. The newer Pleiocene strata show that the same analogy existed between the extinct and recent mammalia of South America, which, like their living congeners, as far as we know, belonged to that continent alone; for the fossil remains, quite different from those in the old world, are of animals of the same families with the sloths, anteaters, and armadilloes which now inhabit that country, but of vastly superior size and different species. In fact, there were giants in the land in those days. Were change of species possible, one might almost fancy that these countries had escaped the wreck of time, and that their inhabitants had pined and dwindled under the change of circumstances. The megatherium and Equus curvidens, or extinct horse, had so vast a range in America, that, while Sir Charles Lyell collected their bones in Georgia in 33° N. latitude, Mr. Darwin brought them from the corresponding latitude in South America. The Equus curvidens differed as much from the living horse as the quagga or zebra does, and the European fossil horse is also probably a distinct and lost species.

A comparison of the fossil remains with the living forms has shown the analogy between these beings of the ancient world and those that now people the earth; and the greatest triumph of the geologist is the certainty with which he can decide upon the nature of animals that have been extinct for thousands of years, from a few bones entombed on the earth’s surface. Baron Cuvier will ever be celebrated as the founder of this branch of comparative anatomy, and which Professor Owen has brought to the highest perfection. Among many discoveries, he has found, by the most minute microscopic observation, that the structure of the tissue of which teeth are formed is different in different classes of animals, and that the species can in many instances be determined from the fragment of a tooth. A small portion of a bone enabled him to decide on the nature of an extinct race of birds, and the subsequent discovery of the whole skeleton confirmed the accuracy of this determination.

The greater part of the land in the northern hemisphere was elevated above the deep during the tertiary period, and such lands as already existed acquired additional height; consequently the climate, which had previously been tropical, became gradually colder, for an increase of land, which raises the temperature between the tropics, has exactly the contrary effects in higher latitudes. Hence, excessive cold prevailed during the latter part of the Pleiocene period, and a great part of the European continent was covered by an ocean full of floating ice, not unlike that seen at this day off the north-eastern coast of America.[9]

During the latter part of the Pleiocene period, however, the bed of that glacial ocean rose partially, and after many vicissitudes the European continent assumed nearly the form it now bears. There is every reason to believe that the glacial sea extended also over great portions of the arctic lands of Asia and America. Old forms of animal and vegetable life were destroyed by these alterations in the surface of the earth, and the consequent change of temperature; and when, in the progress of the Pleiocene period, the mountain-tops appeared as islands above the water, they were clothed with the flora and peopled by the animals they still retain; and new forms were added as the land rose and became dry and fitted to receive and maintain the races of animals now alive, all of which had possession of the earth for ages prior to the historical or human period. Some of the extinct animals had long resisted the great vicissitudes of the times; of these the mammoth or Elephas primigenius, whose fossil remains are found all over Europe, Asia, and America, but especially in the gelid soil of Siberia, alone outlived its associates, the last remnant of a former world. In two or three instances this animal has been discovered entire, entombed in frozen mud, with its hair and its flesh so fresh that wolves and dogs fed upon it. The globe of the eye of one found by M. Middendorf at Tas, between the rivers Oby and Jenesei, was so perfect that it is now preserved in the museum at Moscow. It has been supposed that, as the Siberian rivers flow for hundreds of miles from the southern part of the country to the Arctic Ocean, these elephants might have been drowned by floods while browsing in the milder regions, and that their bodies were carried down by the rivers and embedded in mud, and frozen before they had time to decay. Mr. Darwin has suggested that, if the climate of Siberia has at any time been similar to that of the high latitudes of South America, where the line of perpetual snow in the Andes, and its sudden flexure in Southern Chile, come close to a nearly tropical vegetation, such a vegetation may have prevailed south of the frozen regions in Siberia, and, consequently, the bodies of animals entombed a few feet below the icy surface might be preserved for ages. On the other hand, although the congeners of this animal are now inhabitants of the torrid zone, they may have been able to endure the cold of a Siberian winter, for Baron Cuvier found that this animal differed as much from the living elephant as the horse does from the ass. Mr. Darwin has shown that the supply of food in summer was probably sufficient, since the quantity requisite for the maintenance of the larger animals is by no means in proportion to their bulk, or it may have migrated to a more genial climate in the colder months.

Shell-fish seem to have been more able to endure all the great geological changes than any of their organic associates, but they show a constant approximation to modern species during the progress of the tertiary period. The whole of these strata contain enormous quantities of shells of extinct species; in the oldest, three and a half per cent. of the shells are identical with species now existing, while on the uppermost strata of this geological period there are not less than from ninety to ninety-five in a hundred identical with those now alive.

Of all the fossil fishes, from the Silurian strata to the end of the tertiary, scarcely one is specifically the same with living forms: the Mallotus villosus, or captan, of the salmon family, is an exception, and perhaps a few others of the most recent of these periods. In the Eocene strata one-third belong to extinct genera.

Under the vegetable mould in every country there is a stratum of loose sand, gravel, and mud, lying upon the subjacent rocks, often of great thickness, called alluvium, which in the high latitudes of North America and Europe is mixed with enormous fragments of rock, sometimes angular and sometimes rounded and water-worn, which have been transported hundreds of miles from their origin. It is there known as the Boulder formation, or Northern Drift, because, from the identity of the boulders with the rocks of the northern mountains, they evidently have come from them, and their size becomes less as the distance increases. In Russia there are blocks of great magnitude that have been carried 800 and even 1000 miles south-east from their origin in the Scandinavian range. There is much reason to believe that such masses, enormous as they are, have been transported by ice-bergs, and deposited when the northern parts of the continents were covered by the glacial sea, by which part of Russia was submerged to the depth of at least 1000 feet. The same process is now in progress in the high southern latitudes, where icebergs have been met with covered with fragments of rock and boulders.[10]

The last manifestation of creative power, with few exceptions, differs specifically from all that preceded it; the recent strata contain only the exuviÆ of animals now living, often mixed with the works of man.

The solid earth thus tells us of mountains washed down into the sea with their forests and inhabitants; of lands raised from the bottom of the ocean loaded with the accumulated spoils of centuries; of torrents of water and torrents of fire. In the ordinances of the heavens no voice declares a beginning, no sign points to an end; in the bosom of the earth, however the dawn of life appears, the time is obscurely marked when first living things moved in the waters, when the first plants clothed the land. There we see that during ages of tranquillity the solid rock was forming at the bottom of the ocean, that during ages it was tossed and riven by fire and earthquake. What years must have gone by since that ocean flowed which has left its ripple-marks on the sand, now a solid mass on the mountain—since those unknown creatures left their foot-prints on the shore, now fixed by time on the rock for ever! time, which man measures by days and years, nature measures by thousands of centuries.

The thickness of the fossiliferous strata up to the end of the tertiary formation has been estimated at about seven or eight miles; so that the time requisite for their deposition must have been immense. Every river carries down mud, sand, or gravel, to the sea: the Ganges brings more than 700,000 cubic feet of mud every hour, the Yellow River in China 2,000,000,[11] and the Mississippi still more; yet, notwithstanding these great deposits, the Italian hydrographer Manfredi has estimated that, if the sediment of all the rivers on the globe were spread equally over the bottom of the ocean, it would require 1000 years to raise its bed one foot, so that at that rate it would require 3,960,000 years to raise the bed of the ocean alone to a height nearly equal to the thickness of the fossiliferous strata, or seven miles and a half, not taking account of the waste of the coasts by the sea itself: but if the whole globe be considered, instead of the bottom of the sea only, the time would be nearly four times as great, even supposing as much alluvium to be deposited uniformly both with regard to time and place, which it never is. Besides, in various places the strata have been more than once carried to the bottom of the ocean, and again raised above its surface by subterranean fires after many ages, so that the whole period from the beginning of the primary fossiliferous strata to the present day must be great beyond calculation, and only bears comparison with the astronomical cycles, as might naturally be expected, the earth being without doubt of the same antiquity with the other bodies of the solar system. What then shall we say if the time be included which the granitic, metamorphic, and recent series occupied in forming? These great periods of time correspond wonderfully with the gradual increase of animal life and the successive creation and extinction of numberless orders of being, and with the incredible quantity of organic remains buried in the crust of the earth in every country on the face of the globe.

Every great geological change in the nature of the strata was accompanied by the introduction of a new race of beings, and the gradual extinction of those that had previously existed, their structure and habits being no longer fitted for the new circumstances in which these changes had placed them. The change, however, never was abrupt; and it may be observed that there is no proof of progressive development of species by generation from a low to a high organization, for animals and plants of high organization appeared among the earliest of their kind, yet throughout the whole, the gradual approach to living and more perfect forms is undoubted, not by change of species, but by increasing similarity of type.

The geographical distribution of animated beings was much more extensive in the ancient seas and land than in latter times. In very remote ages the same animal inhabited the most distant parts of the sea: the corallines built from the equator to within ten or fifteen degrees of the pole; and previous to the formation of the carboniferous strata there appears to have been even a greater uniformity in the vegetable than in the animal world, though New Holland had formed even then a peculiar district, supposing the coal in that country to be of the same epoch as in Europe and America; but as the strata became more varied, species were less widely diffused. Some of the saurians were inhabitants of both the Old and New World, while others lived in the latter only. During the tertiary period, the animals of Australia and America differed nearly as much from those of Europe as they do at the present day. The world was then, as now, divided into great physical regions, each inhabited by a peculiar race of animals; and even the different species of mollusca of the same sea were confined to certain shores. Of 405 species of shell-fish which inhabited the Atlantic Ocean during the early and middle parts of the tertiary period, only 12 were common to the American and European coasts. In fact, the divisions of the animal and vegetable creation into geographical districts had been in the latter periods contemporaneous with the rise of the land, each portion of which, as it rose above the deep, had been clothed with a vegetation and peopled with creatures suited to its position with regard to the equator, and to the existing circumstances of the globe; and the marine creatures had, no doubt, been divided into districts at the same periods, because the bed of the ocean had been subject to similar changes.

The quantity of fossil remains is so great that, with the exception of the metals and some of the primary rocks, probably not a particle of matter exists on the surface of the earth that has not at some time formed part of a living creature. Since the commencement of animated existence, zoophytes have built coral reefs extending hundreds of miles, and mountains of limestone are full of their remains all over the globe. Mines of shells are worked to make lime; ranges of hills and rocks, many hundred feet thick, are almost entirely composed of them, and they abound in every mountain-chain throughout the earth. The prodigious quantity of microscopic shells discovered by M. Ehrenberg is still more astonishing; shells not larger than a grain of sand form entire mountains; a great portion of the hills of San Casciano, in Tuscany, consist of chambered shells so minute that Signor Soldani collected 10,454 of them from one ounce of stone. Chalk is often almost entirely composed of them. Tripoli, a fine powder long in use for polishing metals, is also almost wholly composed of shells which owe their polishing property to their siliceous coats; and there are even hills of great extent consisting of this substance, the dÉbris of an infinite variety of microscopic insects.

The facility with which many clays and slates are split is owing, in some instances, to layers of minute shells. Fossil fish are found in all parts of the world, and in all the fossiliferous strata, with the exception of some of the lowest, but each great geological period had species of fish peculiar to itself.

The remains of the great saurians are innumerable; those of extinct quadrupeds are very numerous; but there is no circumstance in the whole science of fossil geology more remarkable than the inexhaustible multitudes of fossil elephants that are found in Siberia. Their tusks have been an object of traffic in ivory for centuries, and in some places they have been in such prodigious quantities, that the ground is tainted with the smell of animal matter. Their huge skeletons are found from the frontier of Europe through all Northern Asia to its extreme eastern point, and from the foot of the AltaÏ mountains to the shores of the Frozen Ocean, a surface equal in extent to the whole of Europe. Some islands in the Arctic Sea, as, for instance, the first of the LÄchow group, are chiefly composed of their remains, mixed with the bones of various other animals of living genera, but extinct species.[12]

Equally wonderful is the quantity of fossil plants that still remain, if it be considered that, from the frail nature of many vegetable substances, multitudes must have perished without leaving a trace behind. The vegetation that covered the terrestrial part of the globe previous to the formation of the carboniferous strata had far surpassed in exuberance the rankest tropical jungles. There are many coal-fields of great extent in various parts of the earth, especially in North America, where that of Pittsburg occupies an area of about 14,000 square miles, and that in the Illinois is not much inferior to the area of all England.[13]

As coal is entirely a vegetable substance, some idea may be formed of the richness of the ancient flora: in latter times it was less exuberant, and never has again been so luxuriant, probably on account of the decrease of temperature during the deposition of the tertiary strata, and in the glacial period which immediately preceded the creation of the present tribes of plants and animals. Even after their introduction the temperature must have been very low, but by subsequent changes in the distribution of the sea and land the cold was gradually mitigated, till at last the climate of the northern hemisphere became what it now is.

Such is the marvellous history laid open to us on the earth’s surface. Surely it is not the heavens only that declare the glory of God—the earth also proclaims His handiwork![14]

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page