Chemical or Photographic Rays of Solar Spectrum—Scheele, Ritter, and Wollaston’s Discoveries—Wedgwood’s and Sir Humphry Davy’s Photographic Pictures—The Calotype—The Daguerreotype—The Chromatype—The Cyanotype—Collodion—Sir John Herschel’s Discoveries in the Chemical Spectrum—M. Becquerel’s Discoveries of Inactive Lines in ditto—Thermic Spectrum—Phosphoric Spectrum—Electrical Properties—Parathermic Rays—Moser and Hunt’s Experiments—General Structure and antagonist Properties of Solar Spectrum—Defracted Spectrum. The Solar Spectrum exercises an energetic action on matter, producing the most wonderful and mysterious changes on the organised and unorganised creation. All bodies are probably affected by light, but it acts with greatest energy on such as are of weak chemical affinity, imparting properties to them which they did not possess before. Collodion and metallic salts, especially those of silver, whose molecules are held together by an unstable equilibrium, are of all bodies the most susceptible of its influence; the effects, however, vary with the substances employed, and with the different rays of the solar spectrum, the chemical properties of which are by no means alike. As early as 1772 M. Scheele showed that the pure white colour of chloride of silver was rapidly darkened by the blue rays of the solar spectrum, while the red rays had no effect upon it: and in 1801 M. Ritter discovered that invisible rays beyond the violet extremity have the property of blackening argentine salts, that this property diminishes towards the less refrangible part of the spectrum, and that the red rays have an opposite quality, that of restoring the blackened salt of silver to its original purity; from which he inferred that the most refrangible extremity of the spectrum has an oxygenising power, and the other that of deoxygenating. Dr. Wollaston found that gum guaiacum acquires a green colour in the violet and blue rays, and resumes its original tint in the red. No attempt had been made to trace natural objects by means of light reflected from them, till Mr. Wedgwood, together with Sir Humphry Mr. Fox Talbot, without any knowledge of M. NiepcÉ’s experiments, had been engaged in the same pursuit, and must be regarded as an independent inventor of photography, one of the most beautiful arts of modern times: he was the first who succeeded in using paper chemically prepared for receiving impressions from natural objects; and he also discovered a method of fixing permanently the impressions—that is, of rendering the paper insensible to any further action of light. In the calotype, one of Mr. Talbot’s applications of the art, the photographic surface is prepared by washing smooth writing-paper, first with a solution of nitrate of silver, then with bromide of potassium, and again with nitrate of silver, drying it at a fire after each washing; the paper is thus rendered so sensitive to light that even the passage of a thin cloud is perceptible on it, consequently it must be prepared by candle-light. Portraits, buildings, insects, leaves of plants—in short, every object is accurately delineated in a few seconds; and in the focus of a camera-obscura the most minute objects are so exactly depicted that the microscope reveals new beauties. Since the effect of the chemical agency of light is to destroy the affinity between the salt and the silver, Mr. Talbot found that, in order to render these impressions permanent on paper, it was only necessary to wash it with salt and water, or with a solution of iodide of potassium. For these liquids the liquid hyposulphites have been advantageously substituted, which are the most efficacious in dissolving and removing the unchanged salt, leaving the reduced silver on the paper. The calotype picture is negative, that is, the lights and shadows are the reverse of what they are in nature, and the right-hand side in nature is the left in the picture; but if it be placed with its face pressed against photographic paper, between a board and a plate of glass, and exposed to the sun a short time, a positive and direct picture, as it is in nature, is formed: engravings may be exactly copied While Mr. Fox Talbot was engaged in these very elegant discoveries in England, M. Daguerre had brought to perfection and made public that admirable process by which he has compelled Nature permanently to engrave her own works; and thus the talents of France and England have been combined in bringing to perfection this useful art. Copper, plated with silver, was successfully employed by M. Daguerre for copying nature by the agency of light. The surface of the plate is converted into an iodide of silver, by placing it horizontally with its face downwards in a covered box, in the bottom of which there is a small quantity of iodine which evaporates spontaneously. In three or four minutes the surface acquires a yellow tint, and then, screening it carefully from light, it must be placed in the focus of a camera obscura, where an invisible image of external objects will be impressed on it in a few minutes. When taken out, the plate must be exposed in another box to the action of mercurial vapour, which attaches itself to those parts of the plate which had been exposed to light, but does not adhere to such parts as had been in shadow; and as the quantity of mercury over the other parts is in exact proportion to the degree of illumination, the shading of the picture is perfect. The image is fixed, first by removing the iodine from the plate by plunging it into hyposulphite of soda, and then washing it in distilled water; by this process the yellow colour is destroyed, and in order to render the mercury permanent, the plate must be exposed a few minutes to nitric vapour, then placed in nitric acid containing copper or silver in solution at a temperature of 611/4° of Fahrenheit for a short time, and lastly polished with chalk. This final part of the process is due to Dr. Berre, of Vienna. Nothing can be more beautiful than the shading of these chiaroscuro pictures when objects are at rest, but the least motion destroys the effect; the method therefore is more applicable to buildings than landscape. Colour is wanting; but the researches of Sir John Herschel give reason to believe that even this will ultimately be attained. The most perfect impressions of seaweeds, leaves of plants, In the chromatype, a peculiar photograph discovered by Mr. Hunt, chromate of copper is used, on which a dark brown negative image is first formed, but by the continued action of light it is changed to a positive yellow picture on a white ground; the farther effect of light is checked by washing the picture in pure water. In cyanotypes, a class of photographs discovered by Sir John Herschel, in which cyanogen in its combinations with iron forms the ground, the pictures are Prussian blue and white. In the chrysotype of the same eminent philosopher, the image is first received on paper prepared with the ammonia-citrate of iron, and afterwards washed with a neutral solution of gold. It is fixed by water acidulated with sulphuric acid, and lastly by hydriodate of potash, from which a white and purple photograph results. It is vain to attempt to describe the various beautiful effects which Sir John Herschel obtained from chemical compounds, and from the juices of plants; the juice of the red poppy gives a positive bluish purple image, that of the ten-week stock a fine rose colour on a pale straw-coloured ground. Pictures may be made by exposure to sunshine, on all compound substances having a weak chemical affinity; but the image is often invisible, as in the Daguerreotype, till brought out by washing in some chemical preparation. Water is frequently sufficient; indeed Sir John Herschel brought out dormant photographs by breathing on them, and some substances are insensible to the action of light till moistened, as for example, gum guaiacum. Argentine papers, however, are little subject to the influence of moisture. The power of the solar rays is augmented in certain cases by placing a plate of glass in close contact over the sensitive surface. All these various experiments, though highly interesting, have now been superseded. It was found that paper did not always answer for photography, on account of imperfections in its structure; silver plates were too expensive; and glass was Chemical action always accompanies the sun’s light, but the analysis of the solar spectrum has partly disclosed the wonderful nature of the emanation. In the research, properties most important and unexpected have been discovered by Sir John Herschel, who imprints the stamp of genius on all he touches—his eloquent papers can alone convey an adequate idea of their value in opening a field of inquiry vast and untrodden. The following brief and imperfect account of his experiments is all that can be attempted here:— A certain degree of chemical energy is distributed through every part of the solar spectrum, and also to a considerable extent through the dark spaces at each extremity. This distribution does not depend on the refrangibility of the rays alone, but also on the nature of the rays themselves, and on the physical properties of the analyzing medium on which the rays are received, whose changes indicate and measure their action. The length of the photographic image of the same solar spectrum varies with the physical qualities of the surface on which it is impressed. When the solar spectrum is received on paper prepared with bromide of silver, the chemical spectrum, as indicated merely by the length of the darkened part, includes within its limits the whole luminous spectrum, extending in one direction far beyond the extreme violet and lavender rays, and in the other down to the extremest red: with tartrate of silver the darkening occupies not only all the space under the The point of maximum energy of chemical action varies as much for different preparations as the scale of action. In the greater number of cases the point of deepest blackening lies about the lower edge of the indigo rays, though in no two cases is it exactly the same, and in many substances it is widely different. On paper prepared with the juice of the ten-week stock (Mathiola annua) there are two maxima, one in the mean yellow and a weaker in the violet; and on a preparation of tartrate of silver Sir John Herschel found three, one in the least refrangible blue, one in the indigo, and a third beyond the visible violet. The decrease in photographic energy is seldom perfectly alike on both sides of the maximum. Thus at the most refrangible end of the solar spectrum the greatest chemical power is exerted in most instances where there is least light and heat, and even in the space where both sensibly cease. Not only the intensity but the kind of action is different in the different points of the solar spectrum, as evidently appears from the various colours that are frequently impressed on the same analyzing surface, each ray having a tendency to impart its own colour. Sir John Herschel obtained a coloured image of the solar spectrum on paper prepared according to Mr. Talbot’s principle, from a sunbeam refracted by a glass prism and then highly condensed by a lens. The photographic image was rapidly formed and very intense, and, when withdrawn from the spectrum and viewed in common daylight, it was found to be coloured with sombre but unequivocal tints imitating the prismatic colours, which varied gradually from red through green and blue to a purplish black. After washing the surface in water, the tints became more decided by being kept a few days in the dark—a phenomenon, Sir John observes, of constant Notwithstanding the great variety in the scale of action of the solar spectrum, the darkening or deoxydizing principle that prevails in the more refrangible part rarely surpasses or even attains the mean yellow ray which is the point of maximum illumination; it is generally cut off abruptly at that point which seems to form a limit between the opposing powers which prevail at the two ends of the spectrum. The bleaching or oxydizing effect of the red rays on blackened muriate of silver discovered by M. Ritter of Jena, and the restoration by the same rays of discoloured gum guaiacum to its original tint by Dr. Wollaston, have already been mentioned as giving the first indications of that difference in the mode of action of the chemical rays at the two ends of the visible spectrum, now placed beyond a doubt. The action exerted by the less refrangible rays beyond and at the red extremity of the solar spectrum, in most instances, so far from blackening metallic salts, protects them from the action of the diffused daylight: but, if the prepared surface has already been blackened by exposure to the sun, they possess the remarkable property of bleaching it in some cases, and under other circumstances of changing the black surface into a fiery red. Sir John Herschel, to whom we owe most of our knowledge of the properties of the chemical spectrum, prepared a sheet of paper by washing it with muriate of ammonia, and then with two coats of nitrate of silver; on this surface he obtained an impression of the solar spectrum exhibiting a range of colours very nearly corresponding with its natural hues. But a very remarkable phenomenon occurred at the end of least refrangibility; the red rays exerted a protecting influence which preserved The least refrangible part of the solar spectrum possesses also, under certain circumstances, a bleaching property, by which the metallic salts are restored to their original whiteness after being blackened by exposure to common daylight, or to the most refrangible rays of the solar spectrum. Paper prepared with iodide of silver, when washed over with ferrocyanite of potash, blackens rapidly when exposed to the solar spectrum. It begins in the violet rays and extends over all the space occupied by the dark chemical rays, and over the whole visible spectrum down to the extreme red rays. This image is coloured, the red rays giving a reddish tint and the blue a blueish. In a short time a bleaching process begins under the red rays, and extends upwards to the green, but the space occupied by the extreme red is maintained perfectly dark. Mr. Hunt found that a similar bleaching power is exerted by the red rays on paper prepared with protocyanide of potassium and gold with a wash of nitrate of silver. The application of a moderately strong hydriodate of potash to darkened photographic paper renders it peculiarly susceptible of being whitened by further exposure to light. If paper prepared with bromide of silver be washed with ferrocyanate of potash while under the influence of the solar spectrum, it is immediately darkened throughout the part exposed to the visible rays down to the end of the red, some slight interference being In certain circumstances the red rays, instead of restoring darkened photographic paper to its original whiteness, produce a deep red colour. When Sir John Herschel received the spectrum on paper somewhat discoloured by exposure to direct sunshine, instead of whiteness, a red border was formed extending from the space occupied by the orange, and nearly covering that on which the red fell. When, instead of exposing the paper in the first instance to direct sunshine, it was blackened by the violet rays of a prismatic spectrum, or by a sunbeam that had undergone the absorptive action of a solution of ammonia-sulphate of copper, the red rays of the condensed spectrum produced on it, not whiteness, but a full and fiery red, which occupied the whole space on which any of the visible red rays had fallen; and this red remained unchanged, however long the paper remained exposed to the least refrangible rays. Sunlight transmitted through red glass produces the same effect as the red rays of the spectrum in the foregoing experiment. Sir John Herschel placed an engraving over a paper blackened by exposure to sunshine, covering the whole with a dark red-brown glass previously ascertained to absorb every ray beyond the orange: in this way a photographic copy was obtained in which the shades were black, as in the original engraving; but the lights, instead of being white, were of the red colour of venous blood, and no other colour could be obtained by exposure to light, however long. Sir John ascertained that every part of the spectrum impressed by the more refrangible rays is equally reddened, or nearly so, by the subsequent action of the less refrangible; thus the red rays have the very remarkable property of assimilating to their own colour the blackness already impressed on photographic paper. That there is a deoxydating property in the more refrangible The photographic action of the two portions of the solar spectrum being so different, Sir John Herschel tried the effect of their united action by superposing the less refrangible part of the spectrum over the more refrangible portion by means of two prisms; and he thus discovered that two rays of different refrangibility, and therefore of different lengths of undulation, acting simultaneously, produce an effect which neither, acting separately, can do. Some circumstances that occurred during the analysis of the chemical spectrum seem to indicate an absorptive action in the sun’s atmosphere. The spectral image impressed on paper prepared with nitrate of silver and Rochelle salt commenced at, or very little below, the mean yellow ray, of a delicate lead colour; and when the action was arrested, such was the character of the whole photographic spectrum. But, when the light of the solar spectrum was allowed to continue its action, there was observed to come on suddenly a new and much more intense impression of darkness, confined in length to the blue and violet rays; and, what is most remarkable, confined also in breadth to the middle of the sun’s image, so far at least as to leave a border of the lead-coloured spectrum traceable, not only round the clear and well-defined convexity of the dark interior spectrum at the less refrangible end, but also laterally along both its edges; and this border was the more easily traced, and less liable to be mistaken, from its striking contrast of colour with the interior spectrum, the former being lead gray, the latter an extremely rich deep velvety brown. The less refrangible end of this interior brown spectrum presented a sharply terminated and regularly elliptical contour, the more refrangible a less decided one. “It may seem too hazardous,” Sir John continues, “to look for the cause Notwithstanding this coincidence in the inactive lines of the two spectra, photographic energy is independent of both light and heat, since it exerts the most powerful influence in those rays where they are least, and also in spaces where neither sensibly exist; but the transmission of the sun’s light through coloured media makes that independence quite evident. Heat and light pass abundantly through yellow glass, or a solution of chromate of potash; but the greater part of the chemical rays are excluded, and chlorine gas diluted with common air, though highly pervious to the luminous and calorific principles, has the same effect. Sir John Herschel found that a slight degree of yellow London fog had a similar effect with that of pale yellow media: he also remarked that a weak solution of azolitmine in potash, which admits a great quantity of green light, excludes chemical action; and some years ago the author, while making experiments on the transmission of chemical rays, observed that green glass, coloured by It is not by vision alone that a knowledge of the sun’s rays is acquired: touch proves that they have the power of raising the temperature of substances exposed to their action. Sir William Herschel discovered that rays which produce the sensation of heat Paper prepared with the sulphuret of barium, when under the solar spectrum, shows only one space of maximum luminous intensity, and the destroying rays are the same as in the sulphuret of calcium. Thus the obscure rays beyond the extreme violet produce light, while the luminous rays extinguish it. The phosphoric spectrum has inactive lines which coincide with those in the luminous and chemical spectra, at least as far as it extends; but in order to be seen the spectrum must be received for a few seconds upon the prepared surface through an A series of experiments by Sir John Herschel have disclosed a new set of obscure rays in the solar spectrum, which seem to bear the same relation to those of heat that the photographic or chemical rays bear to the luminous. They are situate in that part of the spectrum which is occupied by the less refrangible visible colours, and have been named by their discoverer Parathermic rays. It must be held in remembrance that the region of greatest heat in the solar spectrum lies in the dark space beyond the visible red. Now, Sir John Herschel found that in experiments with a solution of gum guaiacum in soda, which gives the paper a green colour, the green, yellow, orange, and red rays of the spectrum invariably discharged the colour, while no effect was produced by the extra-spectral rays of heat, which ought to have had the greatest effect had heat been the cause of the phenomenon. When an aqueous solution of chlorine was poured over a slip of paper prepared with gum guaiacum dissolved in soda, a colour varying from a deep somewhat greenish hue to a fine celestial blue was given to it; and, when the solar spectrum was thrown on the paper while moist, the colour was discharged from all the space under the less refrangible luminous rays, at the same time that the more distant thermic rays beyond the spectrum evaporated the moisture from the space on which they fell; so that the heat spots became apparent. But the spots disappeared as the paper dried, leaving the surface unchanged; while the photographic impression within the visible spectrum increased in intensity; the non-luminous thermic rays, though evidently active as to heat, were yet incapable of effecting that peculiar chemical change which other rays of much less heating power were all the time producing. Sir John having ascertained that an artificial heat from 180° to 280° of Fahrenheit changed the green tint of gum guaiacum to its original yellow hue when moist, but that it had no effect when dry, he therefore The conclusions drawn from these experiments are confirmed by that which follows: a photographic picture formed on paper prepared with a mixture of the solutions of ammonia-citrate of iron and ferro-sesquicyanite of potash in equal parts, then thrown into water and afterwards dried, will be blue and negative, that is to say, the lights and shadows will be the reverse of what they are in nature. If in this state the paper be washed with a solution of proto-nitrate of mercury, the picture will be discharged; but if it be well washed and dried, and a hot smoothing-iron passed over it, the picture instantly reappears, not blue, but brown; if kept some weeks in this state in perfect darkness between the leaves of a portfolio, it fades, and almost entirely vanishes, but a fresh application of heat restores it to its full original intensity. This curious change is not the effect of light, at least not of light alone. A certain temperature must be attained, and that suffices in total darkness; yet, on exposing to a very concentrated spectrum a slip of the paper used in the last experiment, after the uniform blue colour has been discharged and a white ground left, this whiteness is changed to brown over the whole region of the red and orange rays, but not beyond the luminous spectrum. Sir John thence concludes:—1st. That it is the heat of these rays, not their light, which operates the change; 2ndly. That this heat possesses a peculiar chemical quality which is not possessed by the purely calorific rays outside of the visible spectrum, though far more intense; and, 3rdly. That the heat radiated from obscurely hot iron abounds especially in rays analogous to those of the region of the spectrum above indicated. The calorific and parathermic rays appear to be intimately connected with the discoveries of Messrs. Draper and Moser. Daguerre has shown that the action of light on the iodide of silver renders it capable of condensing the vapour of mercury which adheres to the parts affected by it. Professor Moser of KÖnigsberg has proved that the same effect is produced by the simple contact of bodies, and even by their very near juxtaposition, and that in total darkness as well as in light. This discovery he announced in the following words:—“If a surface has been touched in any particular parts by any body, it acquires the property of precipitating all vapours, and these adhere to it or combine chemically with it on these spots differently from what they do on the untouched parts.” If we write on a plate of glass or any smooth surface whatever with blotting-paper, a brush, or anything else, and then clean it, the characters always reappear if the plate or surface be breathed upon, and the same effect may be produced even on the surface of mercury; nor is absolute contact necessary. If a screen cut in a pattern be held over a polished metallic surface at a small distance, and the whole breathed on, after the vapour has evaporated so that no trace is left on the surface, the pattern comes out when it is breathed on again. Mr. Grove found, when plates of zinc and copper were closely approximated, but not in contact, and suddenly separated, that one was positively and the other negatively electric; whence he inferred that the intervening medium was either polarised, or that a radiation analogous, if not identical, with that which produces Moser’s images takes place from plate to plate. Mr. Hunt has shown that many of these phenomena depend on difference of temperature, and that, in order to obtain good impressions, dissimilar metals must be used. For example, gold, silver, bronze, and copper coins were placed on a plate of copper too hot to be touched, and allowed to remain till the plate cooled: all the coins had made an impression, the distinctness and intensity of which were in the order of the metals named. When the plate was exposed to the vapour of mercury the result was the same, but, when the vapour was wiped off, the gold and silver coins only had left permanent images on the copper. These impressions are often minutely perfect, whether the coins are in actual contact with the plate or one-eighth of an inch above it. The mass of the metal has a material influence on the result; a large copper coin makes a better impression on a copper plate than a small silver coin. When coins of different metals are placed on the same plate they interfere with each other. When, instead of being heated, the copper plate was cooled by a freezing mixture, and bad conductors of heat laid upon it, as wood, paper, glass, &c., the result was similar. Mr. Hunt, observing that a black substance leaves a stronger impression on a metallic surface than a white, applied the property to the art of copying prints, woodcuts, writing, and The impression of an engraving was made by laying it face downwards on a silver plate iodized, and placing an amalgamated copper plate upon it; it was left in darkness fifteen hours, during which time an impression of the engraving had been made on the amalgamated plate through the paper. An iodized silver plate was placed in darkness with a coil of string laid on it, and with a polished silver plate suspended one-eighth of an inch above it: after four hours they were exposed to the vapours of mercury, which became uniformly deposited on the iodized plate, but on the silver one there was a sharp image of the string, so that this image was formed in the dark, and even without contact. Coins or other objects leave their impressions in the same manner with perfect sharpness and accuracy, when brought out by vapour without contact, in darkness, and on simple metals. Several of these singular effects appear to be owing to the mutual action of molecules in contact while in a different state, whether of electricity or temperature: others clearly point at some unknown influence exerted between surfaces at a distance, and affecting their molecular structure: possibly it may be the parathermic rays, which have a peculiar chemical action even in total darkness. In the last experiment the effect is certainly produced by the positive portion of one of those remarkable antagonist principles which characterise the solar spectrum. Thus it appears that the prism resolves the pure white sunbeam into three superposed spectra, each varying in refrangibility and intensity throughout its whole length; the visible part is overlapped at one end by the chemical or photographic rays, and at the other by the thermic, but the two latter so much exceed the visible part, that the linear dimensions of the three—the luminous, thermic, and photographic—are in proportion to the numbers 25, 42·10, and 55·10, so that the whole solar spectrum is twice as long as its visible part. The two extremities exert a decided antagonist energy. The least refrangible luminous rays obliterate the action of the photographic rays, while the latter The arrangement varies a little according to the material of the prism and the manner of producing the spectrum, as in that obtained by Professor Draper from diffracted light. It was formed by a beam diffracted by passing through a netting of fine wire, or by reflection from a polished surface of steel, having fine parallel lines drawn on it. This diffracted spectrum is divided into two equal parts in the centre of the yellow; and as in the prismatic spectrum, one half is antagonist to the other half, the red or negative end undoing what the positive or violet end has done. The centre of the yellow is the hottest part, and the heat decreases to both extremities. A line of cold is supposed to exist on this spectrum answering to Fraunhofer’s dark line H. The undulations of the ethereal medium which constitute a sunbeam must be infinitely varied, each influence having a vibration peculiar to itself. Those of light are certainly transverse to the direction of the ray; while Professor Draper believes that those of heat are normal, that is, in the direction of the ray, like those of sound. A doubt exists whether the vibrations of polarised light are perpendicular to the plane of polarisation or in that plane. Professor Stokes of Cambridge has come to the conclusion, both from the diffracted spectrum and theory, that they are perpendicular to the plane of polarisation, but M. Holtzmann is of opinion that they are in that plane, so the subject is still open to discussion. |