Sound—Propagation of Sound illustrated by a Field of Standing Corn—Nature of Waves—Propagation of Sound through the Atmosphere—Intensity—Noises—A Musical Sound—Quality—Pitch—Extent of Human Hearing—Velocity of Sound in Air, Water, and Solids—Causes of the Obstruction of Sound—Law of its Intensity—Reflection of Sound—Echoes—Thunder—Refraction of Sound—Interference of Sounds.
One of the most important uses of the atmosphere is the conveyance of sound. Without the air, deathlike silence would prevail through nature, for in common with all substances it has a tendency to impart vibrations to bodies in contact with it. Therefore undulations received by the air, whether it be from a sudden impulse, such as an explosion or the vibrations of a musical chord, are propagated in every direction, and produce the sensation of sound upon the auditory nerves. A bell rung under the exhausted receiver of an air-pump is inaudible, which shows that the atmosphere is really the medium of sound. In the small undulations of deep water in a calm, the vibrations of the liquid particles are made in the vertical plane, that is, up and down, or at right angles to the direction of the transmission of the waves. But the vibrations of the particles of air which produce sound differ from these, being performed in the same direction in which the waves of sound travel. The propagation of sound has been illustrated by a field of corn agitated by the wind. However irregular the motion of the corn may seem on a superficial view, it will be found, if the velocity of the wind be constant, that the waves are all precisely similar and equal, and that all are separated by equal intervals and move in equal times.
A sudden blast depresses each ear equally and successively in the direction of the wind, but, in consequence of the elasticity of the stalks and the force of the impulse, each ear not only rises again as soon as the pressure is removed, but bends back nearly as much in the contrary direction, and then continues to oscillate backwards and forwards in equal times, like a pendulum, to a less and less extent, till the resistance of the air puts a stop to the motion. These vibrations are the same for every individual ear of corn. Yet, as their oscillations do not all commence at the same time, but successively, the ears will have a variety of positions at any one instant. Some of the advancing ears will meet others in their returning vibrations, and, as the times of oscillation are equal for all, they will be crowded together at regular intervals. Between these there will occur equal spaces where the ears will be few, in consequence of being bent in opposite directions; and at other equal intervals they will be in their natural upright positions. So that over the whole field there will be a regular series of condensations and rarefactions among the ears of corn, separated by equal intervals, where they will be in their natural state of density. In consequence of these changes the field will be marked by an alternation of bright and dark bands. Thus the successive waves which fly over the corn with the speed of the wind are totally distinct from, and entirely independent of the extent of the oscillations of each individual ear, though both take place in the same direction. The length of a wave is equal to the space between two ears precisely in the same state of motion, or which are moving similarly, and the time of the vibration of each ear is equal to that which elapses between the arrival of two successive waves at the same point. The only difference between the undulations of a corn-field and those of the air which produce sound is, that each ear of corn is set in motion by an external cause, and is uninfluenced by the motion of the rest; whereas in air, which is a compressible and elastic fluid, when one particle begins to oscillate, it communicates its vibrations to the surrounding particles, which transmit them to those adjacent, and so on continually. Hence from the successive vibrations of the particles of air the same regular condensations and rarefactions take place as in the field of corn, producing waves throughout the whole mass of air, though each molecule like each individual ear of corn never moves far from its state of rest. The small waves of a liquid, and the undulations of the air, like waves in the corn, are evidently not real masses moving in the direction in which they are advancing, but merely outlines, motions, or forms passing along, and comprehending all the particles of an undulating fluid which are at once in a vibratory state. It is thus that an impulse given to any one point of the atmosphere is successively propagated in all directions, in a wave diverging as from the centre of a sphere to greater and greater distances, but with decreasing intensity, in consequence of the increasing number of particles of inert matter which the force has to move; like the waves formed in still water by a falling stone, which are propagated circularly all around the centre of disturbance (N.160).
The intensity of sound depends upon the violence and extent of the initial vibrations of air; but, whatever they may be, each undulation when once formed can only be transmitted straight forwards, and never returns back again unless when reflected by an opposing obstacle. The vibrations of the aËrial molecules are always extremely small, whereas the waves of sound vary from a few inches to several feet. The various musical instruments, the human voice and that of animals, the singing of birds, the hum of insects, the roar of the cataract, the whistling of the wind, and the other nameless peculiarities of sound, show at once an infinite variety in the modes of aËrial vibration, and the astonishing acuteness and delicacy of the ear, thus capable of appreciating the minutest differences in the laws of molecular oscillation.
All mere noises are occasioned by irregular impulses communicated to the ear; and, if they be short, sudden, and repeated beyond a certain degree of quickness, the ear loses the intervals of silence, and the sound appears continuous. Still such sounds will be mere noise: in order to produce a musical sound, the impulses, and consequently the undulations of the air, must be all exactly similar in duration and intensity, and must recur after exactly equal intervals of time. If a blow be given to the nearest of a series of broad, flat, and equidistant palisades, set edgewise in a line direct from the ear, each palisade will repeat or echo the sound; and these echoes, returning to the ear at successive equal intervals of time, will produce a musical note. The quality of a musical note depends upon the abruptness, and its intensity upon the violence and extent of the original impulse. In the theory of harmony the only property of sound taken into consideration is the pitch, which varies with the rapidity of the vibrations. The grave or low tones are produced by very slow vibrations, which increase in frequency as the note becomes more acute. The lowest man’s voice makes 396 vibrations in a second, whilst the highest woman’s voice makes 2112. Very deep tones are not heard by all alike, and Dr. Wollaston, who made a variety of experiments on the sense of hearing, found that many people, though not at all deaf, are quite insensible to the cry of the bat or the cricket, while to others it is painfully shrill. From his experiments he concluded that human hearing is limited to about nine octaves, extending from the lowest note of the organ to the highest known cry of insects; and he observes with his usual originality that, “as there is nothing in the nature of the atmosphere to prevent the existence of vibrations incomparably more frequent than any of which we are conscious, we may imagine that animals like the Grylli, whose powers appear to commence nearly where ours terminate, may have the faculty of hearing still sharper sounds which we do not know to exist, and that there may be other insects hearing nothing in common with us, but endowed with a power of exciting, and a sense which perceives vibrations, of the same nature indeed as those which constitute our ordinary sounds, but so remote that the animals which perceive them may be said to possess another sense, agreeing with our own solely in the medium by which it is excited.”
M. Savart, so well known for the number and beauty of his researches in acoustics, has proved that a high note of a given intensity, being heard by some ears and not by others, must not be attributed to its pitch, but to its feebleness. His experiments, and those more recently made by Professor Wheatstone, show that, if the pulses could be rendered sufficiently powerful, it would be difficult to fix a limit to human hearing at either end of the scale. M. Savart had a wheel made about nine inches in diameter with 360 teeth set at equal distances round its rim, so that while in motion each tooth successively hit on a piece of card. The tone increased in pitch with the rapidity of the rotation, and was very pure when the number of strokes did not exceed three or four thousand in a second, but beyond that it became feeble and indistinct. With a wheel of a larger size a much higher tone could be obtained, because, the teeth being wider apart, the blows were more intense and more separated from one another. With 720 teeth on a wheel thirty-two inches in diameter, the sound produced by 12,000 strokes in a second was audible, which corresponds to 24,000 vibrations of a musical chord. So that the human ear can appreciate a sound which only lasts the 24,000th part of a second. This note was distinctly heard by M. Savart and by several people who were present, which convinced him that with another apparatus still more acute sounds might be rendered audible.
For the deep tones M. Savart employed a bar of iron, two feet eight inches long, about two inches broad, and half an inch in thickness, which revolved about its centre as if its arms were the spokes of a wheel. When such a machine rotates, it impresses a motion on the air similar to its own, and, when a thin board or card is brought close to its extremities, the current of air is momentarily interrupted at the instant each arm of the bar passes before the card; it is compressed above the card and dilated below; but the instant the spoke has passed a rush of air to restore equilibrium makes a kind of explosion, and, when these succeed each other rapidly, a musical note is produced of a pitch proportional to the velocity of the revolution. When M. Savart turned this bar slowly, a succession of single beats was heard; as the velocity became greater, the sound was only a rattle; but, as soon as it was sufficient to give eight beats in a second, a very deep musical note was distinctly audible corresponding to sixteen single vibrations in a second, which is the lowest that has hitherto been produced. When the velocity of the bar was much increased, the intensity of the sound was hardly bearable. The spokes of a revolving wheel produce the sensation of sound, on the very same principle that a burning stick whirled round gives the impression of a luminous circle. The vibrations excited in the organ of hearing by one beat have not ceased before another impulse is given. Indeed it is indispensable that the impressions made upon the auditory nerves should encroach upon each other in order to produce a full and continued note. On the whole, M. Savart has come to the conclusion, that the most acute sounds would be heard with as much ease as those of a lower pitch, if the duration of the sensation produced by each pulse could be diminished proportionally to the augmentation of the number of pulses in a given time: and on the contrary, if the duration of the sensation produced by each pulse could be increased in proportion to their number in a given time, that the deepest tones would be as audible as any of the others.
The velocity of sound is uniform and independent of the nature, extent, and intensity of the primitive disturbance. Consequently sounds of every quality and pitch travel with equal speed. The smallest difference in their velocity is incompatible either with harmony or melody, for notes of different pitches and intensities, sounded together at a little distance, would arrive at the ear in different times. A rapid succession of notes would in this case produce confusion and discord. But, as the rapidity with which sound is transmitted depends upon the elasticity of the medium through which it has to pass, whatever tends to increase the elasticity of the air must also accelerate the motion of sound. On that account its velocity is greater in warm than in cold weather, supposing the pressure of the atmosphere constant. In dry air, at the freezing temperature, sound travels at the rate of 1090 feet in a second, and for any higher temperature one foot must be added for every degree of the thermometer above 32°: hence at 62° of Fahrenheit its speed in a second is 1120 feet, or 765 miles an hour, which is about three-fourths of the diurnal velocity of the earth’s equator. Since all the phenomena of the transmission of sound are simple consequences of the physical properties of the air, they have been predicted and computed rigorously by the laws of mechanics. It was found, however, that the velocity of sound, determined by observation, exceeded what it ought to have been theoretically by 173 feet, or about one-sixth of the whole amount. La Place suggested that this discrepancy might arise from the increased elasticity of the air in consequence of a development of latent or absorbed heat (N.178) during the undulations of sound, and calculation confirmed the accuracy of his views. The aËrial molecules being suddenly compressed give out their absorbed heat; and, as air is too bad a conductor to carry it rapidly off, it occasions a momentary and local rise of temperature, which, increasing the elasticity of the air without at the same time increasing its inertia, causes the movement to be propagated more rapidly. Analysis gives the true velocity of sound in terms of the elevation of temperature that a mass of air is capable of communicating to itself, by the disengagement of its own absorbed heat when suddenly compressed in a given ratio. This change of temperature however could not be obtained directly by any experiments which had been made at that epoch; but by inverting the problem, and assuming the velocity of sound as given by experiment, it was computed that the temperature of a mass of air is raised nine-tenths of a degree when the compression is equal to 1/116 of its volume.
Probably all liquids are elastic, though considerable force is required to compress them. Water suffers a condensation of nearly 0·0000496 for every atmosphere of pressure, and is consequently capable of conveying sound even more rapidly than air, the velocity in the former being 4708 feet in a second. A person under water hears sounds made in air feebly, but those produced in water very distinctly. According to the experiments of M. Colladon, the sound of a bell was conveyed under water through the Lake of Geneva to the distance of about nine miles. He also perceived that the progress of sound through water is greatly impeded by the interposition of any object, such as a projecting wall; consequently sound under water resembles light in having a distinct shadow. It has much less in air, being transmitted all round buildings or other obstacles, so as to be heard in every direction, though often with a considerable diminution of intensity, as when a carriage turns the corner of a street.
The velocity of sound in passing through solids is in proportion to their hardness, and is much greater than in air or water. A sound which takes some time in travelling through the air passes almost instantaneously along a wire six hundred feet long; consequently it is heard twice—first as communicated by the wire, and afterwards through the medium of the air. The facility with which the vibrations of sound are transmitted along the grain of a log of wood is well known. Indeed they pass through iron, glass, and some kinds of wood, at the rate of 18,530 feet in a second. The velocity of sound is obstructed by a variety of circumstances, such as falling snow, fog, rain, or any other cause which disturbs the homogeneity of the medium through which it has to pass. M. de Humboldt says that it is on account of the greater homogeneity of the atmosphere during the night that sounds are then better heard than during the day, when its density is perpetually changing from partial variations of temperature. His attention was called to this subject on the plain surrounding the Mission of the Apures by the rushing noise of the great cataracts of the Orinoco, which seemed to be three times as loud by night as by day. This he illustrated by experiment. A tall glass half full of champagne cannot be made to ring as long as the effervescence lasts. In order to produce a musical note, the glass together with the liquid it contains must vibrate in unison as a system, which it cannot do in consequence of the fixed air rising through the wine and disturbing its homogeneity, because, the vibrations of the gas being much slower than those of the liquid, the velocity of the sound is perpetually interrupted. For the same reason the transmission of sound as well as light is impeded in passing through an atmosphere of variable density. Sir John Herschel, in his admirable Treatise on Sound, thus explains the phenomenon:—“It is obvious,” he says, “that sound as well as light must be obstructed, stifled, and dissipated from its original direction by the mixture of air of different temperatures, and consequently elasticities; and thus the same cause which produces that extreme transparency of the air at night, which astronomers alone fully appreciate, renders it also more favourable to sound. There is no doubt, however, that the universal and dead silence generally prevalent at night renders our auditory nerves sensible to impressions which would otherwise escape notice. The analogy between sound and light is perfect in this as in so many other respects. In the general light of day the stars disappear. In the continual hum of voices, which is always going on by day, and which reach us from all quarters, and never leave the ear time to attain complete tranquillity, those feeble sounds which catch our attention at night make no impression. The ear, like the eye, requires long and perfect repose to attain its utmost sensibility.”
Many instances may be brought in proof of the strength and clearness with which sound passes over the surface of water or ice. Lieutenant Forster was able to carry on a conversation across Port Bowen Harbour, when frozen, a distance of a mile and a half.
The intensity of sound depends upon the extent of the excursions of the fluid molecules, on the energy of the transient condensations and dilatations, and on the greater or less number of particles which experience these effects. We estimate that intensity by the impetus of these fluid molecules on our organs, which is consequently as the square of the velocity, and not by their inertia, which is as the simple velocity. Were the latter the case, there would be no sound, because the inertia of the receding waves of air would destroy the equal and opposite inertia of those advancing; whence it may be concluded that the intensity of sound diminishes inversely as the square of the distance from its origin. In a tube, however, the force of sound does not decay as in open air, unless perhaps by friction against the sides. M. Biot found, from a number of highly-interesting experiments made on the pipes of the aqueducts in Paris, that a continued conversation could be carried on in the lowest possible whisper through a cylindrical tube about 3120 feet long, the time of transmission through that space being 2·79 seconds. In most cases sound diverges in all directions so as to occupy at any one time a spherical surface; but Dr. Young has shown that there are exceptions, as, for example, when a flat surface vibrates only in one direction. The sound is then most intense when the ear is at right angles to the surface, whereas it is scarcely audible in a direction precisely perpendicular to its edge. In this case it is impossible that the whole of the surrounding air can be affected in the same manner, since the particles behind the sounding surface must be moving towards it whenever the particles before it are retreating. Hence in one half of the surrounding sphere of air its motions are retrograde, while in the other half they are direct; consequently, at the edges where these two portions meet, the motions of the air will neither be retrograde nor direct, and therefore it must be at rest.
It appears, from theory as well as daily experience, that sound is capable of reflection from surfaces (N.179) according to the same laws as light. Indeed any one who has observed the reflection of the waves from a wall on the side of a river, after the passage of a steam-boat, will have a perfect idea of the reflection of sound and of light. As every substance in nature is more or less elastic, it may be agitated according to its own law by the impulse of a mass of undulating air; and reciprocally the surface by its reaction will communicate its undulations back again into the air. Such reflections produce echoes; and as a series of them may take place between two or more obstacles, each will cause an echo of the original sound, growing fainter and fainter till it dies away; because sound, like light, is weakened by reflection. Should the reflecting surface be concave towards a person, the sound will converge towards him with increased intensity, which will be greater still if the surface be spherical and concentric with him. Undulations of sound diverging from one focus of an elliptical shell (N.180) converge in the other after reflection. Consequently a sound from the one will be heard in the other as if it were close to the ear. The rolling noise of thunder has been attributed to reverberation between different clouds, which may possibly be the case to a certain extent. Sir John Herschel is of opinion that an intensely prolonged peal is probably owing to a combination of sounds, because, the velocity of electricity being incomparably greater than that of sound, the thunder may be regarded as originating in every point of a flash of lightning at the same instant. The sound from the nearest point will arrive first; and if the flash run in a direct line from a person, the noise will come later and later from the remote points of its path in a continued roar. Should the direction of the flash be inclined, the succession of sounds will be more rapid and intense: and if the lightning describe a circular curve round a person, the sound will arrive from every point at the same instant with a stunning crash. In like manner the subterranean noises heard during earthquakes like distant thunder may arise from the consecutive arrival at the ear of undulations propagated at the same instant from nearer and more remote points; or if they originate in the same point, the sound may come by different routes through strata of different densities.
Sounds under water are heard very distinctly in the air immediately above; but the intensity decays with great rapidity as the observer goes farther off, and is altogether inaudible at the distance of two or three hundred yards. So that waves of sound, like those of light, in passing from a dense to a rare medium, are not only refracted, but suffer total reflection at very oblique incidences (N.189).
The laws of interference extend also to sound. It is clear that two equal and similar musical strings will be in unison if they communicate the same number of vibrations to the air in the same time. But if two such strings be so nearly in unison that one performs a hundred vibrations in a second, and the other a hundred and one in the same period—during the first few vibrations the two resulting sounds will combine to form one of double the intensity of either, because the aËrial waves will sensibly coincide in time and place; but one will gradually gain on the other till at the fiftieth vibration it will be half an oscillation in advance. Then the waves of air which produce the sound being sensibly equal, but the receding part of the one coinciding with the advancing part of the other, they will destroy one another, and occasion an instant of silence. The sound will be renewed immediately after, and will gradually increase till the hundredth vibration, when the two waves will combine to produce a sound double the intensity of either. These intervals of silence and greatest intensity, called beats, will recur every second; but if the notes differ much from one another, the alternations will resemble a rattle; and if the strings be in perfect unison, there will be no beats, since there will be no interference. Thus by interference is meant the co-existence of two undulations in which the lengths of the waves are the same. And as the magnitude of an undulation may be diminished by the addition of another transmitted in the same direction, it follows that one undulation may be absolutely destroyed by another when waves of the same length are transmitted in the same direction, provided that the maxima of the undulations are equal, and that one follows the other by half the length of a wave. A tuning-fork affords a good example of interference. When that instrument vibrates, its two branches alternately recede from and approach one another; each communicates its vibrations to the air, and a musical note is the consequence. If the fork be held upright about a foot from the ear, and turned round its axis while vibrating, at every quarter revolution the sound will scarcely be heard, while at the intermediate points it will be strong and clear. This phenomenon arises from the interference of the undulations of air coming from the two branches of the fork. When the two branches coincide, or when they are at equal distances from the ear, the waves of air combine to reinforce each other; but at the quadrants, where the two branches are at unequal distances from the ear, the lengths of the waves differ by half an undulation, and consequently destroy one another.