Mean and Apparent Sidereal Time—Mean and Apparent Solar Time—Equation of Time—English and French Subdivisions of Time—Leap Year—Christian Era—Equinoctial Time—Remarkable Eras depending upon the Position of the Solar Perigee—Inequality of the Lengths of the Seasons in the two Hemispheres—Application of Astronomy to Chronology—English and French Standards of Weights and Measures. Astronomy has been of immediate and essential use in affording invariable standards for measuring duration, distance, magnitude, and velocity. The mean sidereal day measured by the time elapsed between two consecutive transits of any star at the same meridian (N.148), and the mean sidereal year which is the time included between two consecutive returns of the sun to the same star, are immutable units with which all great periods of time are compared; the oscillations of the isochronous pendulum measure its smaller portions. By these invariable standards alone we can judge of the slow changes that other elements of the system may have undergone. Apparent sidereal time, which is measured by the transit of the equinoctial point at the meridian of any place, is a variable quantity, from the effects of precession and nutation. Clocks showing apparent sidereal time are employed for observation, and are so regulated that they indicate 0h 0m 0s at the instant the equinoctial point passes the meridian of the observatory. And as time is a measure of angular motion, the clock gives the distances of the heavenly bodies from the equinox by observing the instant at which each passes the meridian, and converting the interval into arcs at the rate of 15° to an hour. The returns of the sun to the meridian and to the same equinox or solstice have been universally adopted as the measure of our civil days and years. The solar or astronomical day is the time that elapses between two consecutive noons or midnights. It is consequently longer than the sidereal day, on account of the proper motion of the sun during a revolution of the celestial The astronomical day begins at noon, but in common reckoning the day begins at midnight. In England it is divided into twenty-four hours, which are counted by twelve and twelve; but in France astronomers, adopting the decimal division, divide the day into ten hours, the hour into one hundred minutes, and the minute into a hundred seconds, because of the facility in computation, and in conformity with their decimal system of weights and measures. This subdivision is not now used in common life, nor has it been adopted in any other country; and although some scientific writers in France still employ that division of time, the custom is beginning to wear out. At one period during the French Revolution, the clock in the gardens of the Tuileries was regulated to show decimal time. The mean length of the day, though accurately determined, is not sufficient for the purposes either of astronomy or civil life. The tropical or civil year of 365d 5h 48m 49s·7, which is the time elapsed between the consecutive returns of the sun to the mean equinoxes or solstices, including all the changes of the seasons, is a natural The day of the new moon immediately following the winter solstice in the 707th year of Rome was made the 1st of January of the first year of Julius CÆsar. The 25th of December of his Since solar and sidereal time are estimated from the passage of the sun and the equinoctial point across the meridian of each place, the hours are different at different places: while it is one o’clock at one place, it is two at another, three at another, &c.; for it is obvious that it is noon at one part of the globe at the same moment that it is midnight at another diametrically opposite to it: consequently an event which happens at one and the same instant of absolute time is recorded at different places as having happened at different times. Therefore, when observations made at different places are to be compared, they must be reduced by computation to what they would have been had they been made under the same meridian. To obviate this it was proposed by Sir John Herschel to employ mean equinoctial time, which is the same for all the world, and independent alike of local circumstances and inequalities in the sun’s motion. It is the time elapsed from the instant the mean sun enters the mean vernal equinox, and is reckoned in mean solar days and parts of a day. Some remarkable astronomical eras are determined by the position of the major axis of the solar ellipse, which depends upon the direct motion of the perigee (N.102) and the precession of the equinoxes conjointly, the annual motion of the one being 11·8, and that of the other 50·1. Hence the axis, moving at the rate of 61·9 annually, accomplishes a tropical revolution in 209·84 years. It coincided with the line of the equinoxes 4000 or 4089 years before the Christian era, much about the time chronologists assign for the creation of man. In 6483 the major axis will again coincide with the line of the equinoxes; but then the solar perigee will coincide with the equinox of autumn, whereas at the creation of man it coincided with the vernal equinox. In the year 1246 the major axis was perpendicular to the line of the equinoxes; then the solar perigee coincided with the solstice of summer, and the apogee with the The variation in the position of the solar ellipse occasions corresponding changes in the length of the seasons. In its present position spring is shorter than summer, and autumn longer than winter; and while the solar perigee continues as it now is, between the solstice of winter and the equinox of spring, the period including spring and summer will be longer than that including autumn and winter. In this century the difference is between seven and eight days. The intervals will be equal towards the year 6483, when the perigee will coincide with the equinox of spring; but, when it passes that point, the spring and summer taken together will be shorter than the period including the autumn and winter (N.151). These changes will be accomplished in a tropical revolution of the major axis of the earth’s orbit, which includes an interval of 20,984 years. Were the orbit circular, the seasons would be equal; their difference arises from the excentricity of the orbit, small as it is; but the changes are so trifling as to be imperceptible in the short span of human life. No circumstance in the whole science of astronomy excites a deeper interest than its application to chronology. “Whole nations,” says La Place, “have been swept from the earth, with their languages, arts, and sciences, leaving but confused masses of ruins to mark the place where mighty cities stood; their history, with the exception of a few doubtful traditions, has perished; but the perfection of their astronomical observations marks their high antiquity, fixes the periods of their existence, and proves that, even at that early time, they must have made considerable progress in science.” The ancient state of the heavens may now be computed with great accuracy; and, by comparing the results of calculation with ancient observations, the exact period at which they were made may be verified if true, or, if false, their error may be detected. If the date be accurate and the observation At the solstices the sun is at his greatest distance from the equator; consequently his declination at these times is equal to the obliquity of the ecliptic (N.152), which was formerly determined from the meridian length of the shadow of the stile of a dial on the day of a solstice. The lengths of the meridian shadow at the summer and winter solstices are recorded to have been observed at the city of Layang, in China, 1100 years before the Christian era. From these the distances of the sun from the zenith (N.153) of the city of Layang are known. Half the sum of these zenith distances determines the latitude, and half their difference gives the obliquity of the ecliptic at the period of the observation; and, as the law of the variation of the obliquity is known, both the time and place of the observations have been verified by computations from modern tables. Thus the Chinese had made some advances in the science of astronomy at that early period. Their whole chronology is founded on the observations of eclipses, which prove the existence of that empire for more than 4700 years. The epoch of the lunar tables of the Indians, supposed by Bailly to be 3000 years before the Christian era, was proved by La Place, from the acceleration of the moon, not to be more ancient than the time of Ptolemy, who lived in the second century after it. The great inequality of Jupiter and Saturn, whose cycle embraces 918 years, is peculiarly fitted for marking the civilization of a people. The Indians had determined the mean motions of these two planets in that part of their periods when the apparent mean motion of Saturn was at the slowest, and that of Jupiter the most rapid. The periods in which that happened were 3102 years before the Christian era, and the year 1491 after it. The returns of comets to their perihelia may possibly mark the present state of astronomy to future ages. The places of the fixed stars are affected by the precession of the equinoxes; and, as the law of that variation is known, their positions at any time may be computed. Now Eudoxus, a contemporary of Plato, mentions a star situate in the pole of the equator, and it appears from computation that ? Draconis was It is possible that a knowledge of astronomy may lead to the interpretation of hieroglyphical characters. Astronomical signs are often found on the ancient Egyptian monuments, probably employed by the priests to record dates. The author had occasion to witness an instance of this most interesting application of astronomy, in ascertaining the date of a papyrus, sent from Egypt by Mr. Salt, in the hieroglyphical researches of the late Dr. Thomas Young, whose profound and varied acquirements do honour to his country, and to the age in which he lived. The manuscript was found in a mummy case; it proved to be a horoscope of the age of Ptolemy, and its date was determined from the configuration of the heavens at the time of its construction. The form of the earth furnishes a standard of weights and measures for the ordinary purposes of life, as well as for the determination of the masses and distances of the heavenly bodies. The length of the pendulum vibrating seconds of mean solar time, in the latitude of London, forms the standard of the British measure of extension. Its approximate length oscillating in vacuo at the temperature of 62° of Fahrenheit, and reduced to the level of the sea (N.154), was determined by Captain Kater to be 39·1393 inches. The weight of a cubic inch of water at the temperature of 62° of Fahrenheit, barometer 30 inches, was also determined in parts of the imperial troy pound, whence a standard both of weight and capacity was deduced. The French have adopted the mÈtre, equal to 3·2808992 English feet, for their unit of linear measure, which is the ten-millionth part of the arc of the meridian which extends from the equator to the pole, as deduced from the measures of the separate arc extending from Formentera, the most southern of the Balearic Islands, to Dunkirk. Should the national standards of the two countries ever be lost, both may be recovered, since they are derived from natural and invariable ones. The length of the measure deduced from that of the pendulum would be found again with more |