SECTION III.

Previous

Perturbations, Periodic and Secular—Disturbing Action equivalent to three Partial Forces—Tangential Force the cause of the Periodic Inequalities in Longitude, and Secular Inequalities in the Form and Position of the Orbit in its own Plane—Radial Force the cause of Variations in the Planet’s Distance from the Sun—It combines with the Tangential Force to produce the Secular Variations in the Form and Position of the Orbit in its own Plane—Perpendicular Force the cause of Periodic Perturbations in Latitude, and Secular Variations in the Position of the Orbit with regard to the Plane of the Ecliptic—Mean Motion and Major Axis Invariable—Stability of System—Effects of a Resisting Medium—Invariable Plane of the Solar System and of the Universe—Great Inequality of Jupiter and Saturn.

The planets are subject to disturbances of two kinds, both resulting from the constant operation of their reciprocal attraction: one kind, depending upon their positions with regard to each other, begins from zero, increases to a maximum, decreases, and becomes zero again, when the planets return to the same relative positions. In consequence of these, the disturbed planet is sometimes drawn away from the sun, sometimes brought nearer to him: sometimes it is accelerated in its motion, and sometimes retarded. At one time it is drawn above the plane of its orbit, at another time below it, according to the position of the disturbing body. All such changes, being accomplished in short periods, some in a few months, others in years, or in hundreds of years, are denominated periodic inequalities. The inequalities of the other kind, though occasioned likewise by the disturbing energy of the planets, are entirely independent of their relative positions. They depend upon the relative positions of the orbits alone, whose forms and places in space are altered by very minute quantities, in immense periods of time, and are therefore called secular inequalities.

The periodical perturbations are compensated when the bodies return to the same relative positions with regard to one another and to the sun: the secular inequalities are compensated when the orbits return to the same positions relatively to one another and to the plane of the ecliptic.

Planetary motion, including both these kinds of disturbance, may be represented by a body revolving in an ellipse, and making small and transient deviations, now on one side of its path, and now on the other, whilst the ellipse itself is slowly, but perpetually, changing both in form and position.

The periodic inequalities are merely transient deviations of a planet from its path, the most remarkable of which only lasts about 918 years; but, in consequence of the secular disturbances, the apsides, or extremities of the major axes of all the orbits, have a direct but variable motion in space, excepting those of the orbit of Venus, which are retrograde (N.61), and the lines of the nodes move with a variable velocity in a contrary direction. Besides these, the inclination and excentricity of every orbit are in a state of perpetual but slow change. These effects result from the disturbing action of all the planets on each. But, as it is only necessary to estimate the disturbing influence of one body at a time, what follows may convey some idea of the manner in which one planet disturbs the elliptical motion of another.

Suppose two planets moving in ellipses round the sun; if one of them attracted the other and the sun with equal intensity, and in parallel directions (N.62), it would have no effect in disturbing the elliptical motion. The inequality of this attraction is the sole cause of perturbation, and the difference between the disturbing planet’s action on the sun and on the disturbed planet constitutes the disturbing force, which consequently varies in intensity and direction with every change in the relative positions of the three bodies. Although both the sun and planet are under the influence of the disturbing force, the motion of the disturbed planet is referred to the centre of the sun as a fixed point, for convenience. The whole force (N.63) which disturbs a planet is equivalent to three partial forces. One of these acts on the disturbed planet, in the direction of a tangent to its orbit, and is called the tangential force: it occasions secular inequalities in the form and position of the orbit in its own plane, and is the sole cause of the periodical perturbations in the planet’s longitude. Another acts upon the same body in the direction of its radius vector, that is, in the line joining the centres of the sun and planet, and is called the radial force: it produces periodical changes in the distance of the planet from the sun, and affects the form and position of the orbit in its own plane. The third, which may be called the perpendicular force, acts at right angles to the plane of the orbit, occasions the periodic inequalities in the planet’s latitude, and affects the position of the orbit with regard to the plane of the ecliptic.

It has been observed, that the radius vector of a planet, moving in a perfectly elliptical orbit, passes over equal spaces or areas in equal times; a circumstance which is independent of the law of the force, and would be the same whether it varied inversely as the square of the distance, or not, provided only that it be directed to the centre of the sun. Hence the tangential force, not being directed to the centre, occasions an unequable description of areas, or, what is the same thing, it disturbs the motion of the planet in longitude. The tangential force sometimes accelerates the planet’s motion, sometimes retards it, and occasionally has no effect at all. Were the orbits of both planets circular, a complete compensation would take place at each revolution of the two planets, because the arcs in which the accelerations and retardations take place would be symmetrical on each side of the disturbing force. For it is clear, that if the motion be accelerated through a certain space, and then retarded through as much, the motion at the end of the time will be the same as if no change had taken place. But, as the orbits of the planets are ellipses, this symmetry does not hold: for, as the planet moves unequably in its orbit, it is in some positions more directly, and for a longer time, under the influence of the disturbing force than in others. And, although multitudes of variations do compensate each other in short periods, there are others, depending on peculiar relations among the periodic times of the planets, which do not compensate each other till after one, or even till after many revolutions of both bodies. A periodical inequality of this kind in the motions of Jupiter and Saturn has a period of no less than 918 years.

The radial force, or that part of the disturbing force which acts in the direction of the line joining the centres of the sun and disturbed planet, has no effect on the areas, but is the cause of periodical changes of small extent in the distance of the planet from the sun. It has already been shown, that the force producing perfectly elliptical motion varies inversely as the square of the distance, and that a force following any other law would cause the body to move in a curve of a very different kind. Now, the radial disturbing force varies directly as the distance; and, as it sometimes combines with and increases the intensity of the sun’s attraction for the disturbed body, and at other times opposes and consequently diminishes it, in both cases it causes the sun’s attraction to deviate from the exact law of gravity, and the whole action of this compound central force on the disturbed body is either greater or less than what is requisite for perfectly elliptical motion. When greater, the curvature of the disturbed planet’s path, on leaving its perihelion (N.64), or point nearest the sun, is greater than it would be in the ellipse, which brings the planet to its aphelion (N.65), or point farthest from the sun, before it has passed through 180°, as it would do if undisturbed. So that in this case the apsides, or extremities of the major axis, advance in space. When the central force is less than the law of gravity requires, the curvature of the planet’s path is less than the curvature of the ellipse. So that the planet, on leaving its perihelion, would pass through more than 180° before arriving at its aphelion, which causes the apsides to recede in space (N.66). Cases both of advance and recess occur during a revolution of the two planets; but those in which the apsides advance preponderate. This, however, is not the full amount of the motion of the apsides; part arises also from the tangential force (N.63), which alternately accelerates and retards the velocity of the disturbed planet. An increase in the planet’s tangential velocity diminishes the curvature of its orbit, and is equivalent to a decrease of central force. On the contrary, a decrease of the tangential velocity, which increases the curvature of the orbit, is equivalent to an increase of central force. These fluctuations, owing to the tangential force, occasion an alternate recess and advance of the apsides, after the manner already explained (N.66). An uncompensated portion of the direct motion, arising from this cause, conspires with that already impressed by the radial force, and in some cases even nearly doubles the direct motion of these points. The motion of the apsides may be represented by supposing a planet to move in an ellipse, while the ellipse itself is slowly revolving about the sun in the same plane (N.67). This motion of the major axis, which is direct in all the orbits except that of the planet Venus, is irregular, and so slow that it requires more than 109,830 years for the major axis of the earth’s orbit to accomplish a sidereal revolution (N.68), that is, to return to the same stars; and 20,984 years to complete its tropical revolution (N.69), or to return to the same equinox. The difference between these two periods arises from a retrograde motion in the equinoctial point, which meets the advancing axis before it has completed its revolution with regard to the stars. The major axis of Jupiter’s orbit requires no less than 200,610 years to perform its sidereal revolution, and 22,748 years to accomplish its tropical revolution from the disturbing action of Saturn alone.

A variation in the excentricity of the disturbed planet’s orbit is an immediate consequence of the deviation from elliptical curvature, caused by the action of the disturbing force. When the path of the body, in proceeding from its perihelion to its aphelion, is more curved than it ought to be from the effect of the disturbing forces, it falls within the elliptical orbit, the excentricity is diminished, and the orbit becomes more nearly circular; when that curvature is less than it ought to be, the path of the planet falls without its elliptical orbit (N.66), and the excentricity is increased; during these changes, the length of the major axis is not altered, the orbit only bulges out, or becomes more flat (N.70). Thus the variation in the excentricity arises from the same cause that occasions the motion of the apsides (N.67). There is an inseparable connection between these two elements: they vary simultaneously, and have the same period; so that, whilst the major axis revolves in an immense period of time, the excentricity increases and decreases by very small quantities, and at length returns to its original magnitude at each revolution of the apsides. The terrestrial excentricity is decreasing at the rate of about 40 miles annually; and, if it were to decrease equably, it would be 39,861 years before the earth’s orbit became a circle. The mutual action of Jupiter and Saturn occasions variations in the excentricity of both orbits, the greatest excentricity of Jupiter’s orbit corresponding to the least of Saturn’s. The period in which these vicissitudes are accomplished is 70,414 years, estimating the action of these two planets alone; but, if the action of all the planets were estimated, the cycle would extend to millions of years.

That part of the disturbing force is now to be considered which acts perpendicularly to the plane of the orbit, causing periodic perturbations in latitude, secular variations in the inclination of the orbit, and a retrograde motion to its nodes on the true plane of the ecliptic (N.71). This force tends to pull the disturbed body above, or push (N.72) it below, the plane of its orbit, according to the relative positions of the two planets with regard to the sun, considered to be fixed. By this action, it sometimes makes the plane of the orbit of the disturbed body tend to coincide with the plane of the ecliptic, and sometimes increases its inclination to that plane. In consequence of which, its nodes alternately recede or advance on the ecliptic (N.73). When the disturbing planet is in the line of the disturbed planet’s nodes (N.74), it neither affects these points, the latitude, nor the inclination, because both planets are then in the same plane. When it is at right angles to the line of the nodes, and the orbit symmetrical on each side of the disturbing force, the average motion of these points, after a revolution of the disturbed body, is retrograde, and comparatively rapid: but, when the disturbing planet is so situated that the orbit of the disturbed planet is not symmetrical on each side of the disturbing force, which is most frequently the case, every possible variety of action takes place. Consequently, the nodes are perpetually advancing or receding with unequal velocity; but, as a compensation is not effected, their motion is, on the whole, retrograde.

With regard to the variations in the inclination, it is clear, that, when the orbit is symmetrical on each side of the disturbing force, all its variations are compensated after a revolution of the disturbed body, and are merely periodical perturbations in the planet’s latitude; and no secular change is induced in the inclination of the orbit. When, on the contrary, that orbit is not symmetrical on each side of the disturbing force, although many of the variations in latitude are transient or periodical, still, after a complete revolution of the disturbed body, a portion remains uncompensated, which forms a secular change in the inclination of the orbit to the plane of the ecliptic. It is true, part of this secular change in the inclination is compensated by the revolution of the disturbing body, whose motion has not hitherto been taken into the account, so that perturbation compensates perturbation; but still a comparatively permanent change is effected in the inclination, which is not compensated till the nodes have accomplished a complete revolution.

The changes in the inclination are extremely minute (N.75), compared with the motion of the nodes, and there is the same kind of inseparable connection between their secular changes that there is between the variation of the excentricity and the motion of the major axis. The nodes and inclinations vary simultaneously; their periods are the same, and very great. The nodes of Jupiter’s orbit, from the action of Saturn alone, require 36,261 years to accomplish even a tropical revolution. In what precedes, the influence of only one disturbing body has been considered; but, when the action and reaction of the whole system are taken into account, every planet is acted upon, and does itself act, in this manner, on all the others; and the joint effect keeps the inclinations and excentricities in a state of perpetual variation. It makes the major axes of all the orbits continually revolve, and causes, on an average, a retrograde motion of the nodes of each orbit upon every other. The ecliptic (N.71) itself is in motion from the mutual action of the earth and planets, so that the whole is a compound phenomenon of great complexity, extending through unknown ages. At the present time the inclinations of all the orbits are decreasing, but so slowly, that the inclination of Jupiter’s orbit is only about six minutes less than it was in the age of Ptolemy.

But, in the midst of all these vicissitudes, the length of the major axes and the mean motions of the planets remain permanently independent of secular changes. They are so connected by Kepler’s law, of the squares of the periodic times being proportional to the cubes of the mean distances of the planets from the sun, that one cannot vary without affecting the other. And it is proved, that any variations which do take place are transient, and depend only on the relative positions of the bodies.

It is true that, according to theory, the radial disturbing force should permanently alter the dimensions of all the orbits, and the periodic times of all the planets, to a certain degree. For example, the masses of all the planets revolving within the orbit of any one, such as Mars, by adding to the interior mass, increase the attracting force of the sun, which, therefore, must contract the dimensions of the orbit of that planet, and diminish its periodic time; whilst the planets exterior to Mars’s orbit must have the contrary effect. But the mass of the whole of the planets and satellites taken together is so small, when compared with that of the sun, that these effects are quite insensible, and could only have been discovered by theory. And, as it is certain that the length of the major axes and the mean motions are not permanently changed by any other power whatever, it may be concluded that they are invariable.

With the exception of these two elements, it appears that all the bodies are in motion, and every orbit in a state of perpetual change. Minute as these changes are, they might be supposed to accumulate in the course of ages, sufficiently to derange the whole order of nature, to alter the relative positions of the planets, to put an end to the vicissitudes of the seasons, and to bring about collisions which would involve our whole system, now so harmonious, in chaotic confusion. It is natural to inquire, what proof exists that nature will be preserved from such a catastrophe? Nothing can be known from observation, since the existence of the human race has occupied comparatively but a point in duration, while these vicissitudes embrace myriads of ages. The proof is simple and conclusive. All the variations of the solar system, secular as well as periodic, are expressed analytically by the sines and cosines of circular arcs (N.76), which increase with the time; and, as a sine or cosine can never exceed the radius, but must oscillate between zero and unity, however much the time may increase, it follows that when the variations have accumulated to a maximum by slow changes, in however long a time, they decrease, by the same slow degrees, till they arrive at their smallest value, again to begin a new course; thus for ever oscillating about a mean value. This circumstance, however, would be insufficient, were it not for the small excentricities of the planetary orbits, their minute inclinations to the plane of the ecliptic, and the revolutions of all the bodies, as well planets as satellites, in the same direction. These secure the perpetual stability of the solar system (N.77). However, at the time that the stability was proved by La Grange and La Place, the telescopic planets between Mars and Jupiter had not been discovered; but La Grange, having investigated the subject under a very general point of view, showed that, if a planetary system be composed of very unequal masses, the whole of the larger would maintain an unalterable stability with regard to the form and position of their orbits, while the orbits of the lesser might undergo unlimited changes. M. Le Verrier has applied this to the solar system, and has found that the orbits of all the larger planets will for ever maintain an unalterable stability in form and position; for, though liable to mutations of very long periods, they return again exactly to what they originally were, oscillating between very narrow limits; but he found a zone of instability between the orbit of Mars, and twice the mean distance of the earth from the sun,[1] or between 1·5 and 2·00; therefore the position and form of the orbits of such of the telescopic planets as revolve within that zone will be subject to unlimited variations. But the orbits of those more remote from the sun than Flora, or beyond 2·20, will be stable, so that their excentricities and inclinations must always have been, and will always remain, very great, since they must have depended upon the primitive conditions that prevailed when these planetary atoms were launched into space. The 51st of these small bodies, which was discovered, and the elements of its orbit determined, by M. Valz, at Nimes, has a mean distance of 1·88; so it revolves within the zone of instability. It has a shorter periodic time than any of those previously discovered, and a greater excentricity, with the exception of Nysa. Its orbit cuts that of Mars, and comes nearer to the earth than the orbits of either Mars or Venus, a circumstance which would be favourable for correcting the parallax of the sun, or confirming its accuracy. The telescopic planets, numerous as they are, have no influence on the motions of the larger planets, for Jupiter has a diameter of 90,734 miles, while that of Pallas, his nearest neighbour, is only 97 miles, little more than the distance from London to Bath. The diameter of Mars, on the other side of the small planets, is 4546 miles, and that of the earth 79251/2 miles, so that the telescopic group are too minute to disturb the others. M. Le Verrier found another zone of instability between Venus and the sun, on the border of which Mercury is revolving, the inclination of whose orbit to the plane of the ecliptic is about 7°, which is more than that of any of the large planets. Neptune’s orbit is, no doubt, as stable as that of any other of the large planets, as the inclination is very small, but he will have periodical variations of very long duration from the reciprocal attraction between him and Uranus, one especially of an enormous duration, similar to those of Jupiter and Saturn, and, like them, depending on the time of his revolution round the sun, being nearly twice as long as that of Saturn. Mr. Adams has computed that Neptune produces a periodical perturbation in the motion of Uranus, whose duration is about 6800 years.

The equilibrium of the system, however, would be deranged if the planets moved in a resisting medium (N.78) sufficiently dense to diminish their tangential velocity, for then both the excentricities and the major axes of the orbits would vary with the time, so that the stability of the system would be ultimately destroyed. The existence of an ethereal medium is now proved; and, although it is so extremely rare that hitherto its effects on the motions of the planets have been altogether insensible, there can be no doubt that, in the immensity of time, it will modify the forms of the planetary orbits, and may at last even cause the destruction of our system, which in itself contains no principle of decay, unless a rotatory motion from west to east has been given to this medium by the bodies of the solar system, which have all been revolving about the sun in that direction for unknown ages. This rotation, which seems to be highly probable, may even have been coeval with its creation. Such a vortex would have no effect on bodies moving with it, but it would influence the motions of those revolving in a contrary direction. It is possible that the disturbances experienced by comets, which have already revealed the existence of this medium, may also, in time, disclose its rotatory motion.

The form and position of the planetary orbits, and the motion of the bodies in the same direction, together with the periodicity of the terms in which the inequalities are expressed, assure us that the variations of the system are confined within very narrow limits, and that, although we do not know the extent of the limits, nor the period of that grand cycle which probably embraces millions of years, yet they never will exceed what is requisite for the stability and harmony of the whole; for the preservation of which every circumstance is so beautifully and wonderfully adapted.

The plane of the ecliptic itself, though assumed to be fixed at a given epoch for the convenience of astronomical computation, is subject to a minute secular variation of 45·7, occasioned by the reciprocal action of the planets. But, as this is also periodical, and cannot exceed 2° 42', the terrestrial equator, which is inclined to it at an angle[2] of 23° 27' 28·29, will never coincide with the plane of the ecliptic: so there never can be perpetual spring (N.79). The rotation of the earth is uniform; therefore day and night, summer and winter, will continue their vicissitudes while the system endures, or is undisturbed by foreign causes.

Yonder starry sphere
Of planets and of fix’d, in all her wheels,
Resembles nearest mazes intricate,
Eccentric, intervolved, yet regular,
Then most, when most irregular they seem.

The stability of our system was established by La Grange: “a discovery,” says Professor Playfair, “that must render the name for ever memorable in science, and revered by those who delight in the contemplation of whatever is excellent and sublime.” After Newton’s discovery of the mechanical laws of the elliptical orbits of the planets, that of their periodical inequalities, by La Grange, is, without doubt, the noblest truth in the mechanism of the heavens; and, in respect of the doctrine of final causes, it may be regarded as the greatest of all.

Notwithstanding the permanency of our system, the secular variations in the planetary orbits would have been extremely embarrassing to astronomers when it became necessary to compare observations separated by long periods. The difficulty was in part obviated, and the principle for accomplishing it established, by La Place, and has since been extended by M. Poinsot. It appears that there exists an invariable plane (N.80), passing through the centre of gravity of the system, about which the whole oscillates within very narrow limits, and that this plane will always remain parallel to itself, whatever changes time may induce in the orbits of the planets, in the plane of the ecliptic, or even in the law of gravitation; provided only that our system remains unconnected with any other. The position of the plane is determined by this property—that, if each particle in the system be multiplied by the area described upon this plane in a given time, by the projection of its radius vector about the common centre of gravity of the whole, the sum of all these products will be a maximum (N.81). La Place found that the plane in question is inclined to the ecliptic at an angle of nearly 1° 34' 15, and that, in passing through the sun, and about midway between the orbits of Jupiter and Saturn, it may be regarded as the equator of the solar system, dividing it into two parts, which balance one another in all their motions. This plane of greatest inertia, by no means peculiar to the solar system, but existing in every system of bodies submitted to their mutual attractions only, always maintains a fixed position, whence the oscillations of the system may be estimated through unlimited time. Future astronomers will know, from its immutability or variation, whether the sun and his attendants are connected or not with the other systems of the universe. Should there be no link between them, it may be inferred, from the rotation of the sun, that the centre of gravity (N.82) of the system situate within his mass describes a straight line in this invariable plane or great equator of the solar system, which, unaffected by the changes of time, will maintain its stability through endless ages. But, if the fixed stars, comets, or any unknown and unseen bodies, affect our sun and planets, the nodes of this plane will slowly recede on the plane of that immense orbit which the sun may describe about some most distant centre, in a period which it transcends the power of man to determine. There is every reason to believe that this is the case; for it is more than probable that, remote as the fixed stars are, they in some degree influence our system, and that even the invariability of this plane is relative, only appearing fixed to creatures incapable of estimating its minute and slow changes during the small extent of time and space granted to the human race. “The development of such changes,” as M. Poinsot justly observes, “is similar to an enormous curve, of which we see so small an arc that we imagine it to be a straight line.” If we raise our views to the whole extent of the universe, and consider the stars, together with the sun, to be wandering bodies, revolving about the common centre of creation, we may then recognise in the equatorial plane passing through the centre of gravity of the universe the only instance of absolute and eternal repose.

All the periodic and secular inequalities deduced from the law of gravitation are so perfectly confirmed by observation, that analysis has become one of the most certain means of discovering the planetary irregularities, either when they are too small, or too long in their periods, to be detected by other methods. Jupiter and Saturn, however, exhibit inequalities which for a long time seemed discordant with that law. All observations, from those of the Chinese and Arabs down to the present day, prove that for ages the mean motions of Jupiter and Saturn have been affected by a great inequality of a very long period, forming an apparent anomaly in the theory of the planets. It was long known by observation that five times the mean motion of Saturn is nearly equal to twice that of Jupiter; a relation which the sagacity of La Place perceived to be the cause of a periodic irregularity in the mean motion of each of these planets, which completes its period in nearly 918 years, the one being retarded while the other is accelerated; but both the magnitude and period of these quantities vary, in consequence of the secular variations in the elements of the orbits. Suppose the two planets to be on the same side of the sun, and all three in the same straight line, they are then said to be in conjunction (N.83). Now, if they begin to move at the same time, one making exactly five revolutions in its orbit while the other only accomplishes two, it is clear that Saturn, the slow-moving body, will only have got through a part of its orbit during the time that Jupiter has made one whole revolution and part of another, before they be again in conjunction. It is found that during this time their mutual action is such as to produce a great many perturbations which compensate each other, but that there still remains a portion outstanding, owing to the length of time during which the forces act in the same manner; and, if the conjunction always happened in the same point of the orbit, this uncompensated inequality in the mean motion would go on increasing till the periodic times and forms of the orbits were completely and permanently changed: a case that would actually take place if Jupiter accomplished exactly five revolutions in the time Saturn performed two. These revolutions are, however, not exactly commensurable; the points in which the conjunctions take place are in advance each time as much as 8°·37; so that the conjunctions do not happen exactly in the same points of the orbits till after a period of 850 years; and, in consequence of this small advance, the planets are brought into such relative positions, that the inequality, which seemed to threaten the stability of the system, is completely compensated, and the bodies, having returned to the same relative positions with regard to one another and the sun, begin a new course. The secular variations in the elements of the orbit increase the period of the inequality to 918 years (N.84). As any perturbation which affects the mean motion affects also the major axis, the disturbing forces tend to diminish the major axis of Jupiter’s orbit, and increase that of Saturn’s, during one half of the period, and the contrary during the other half. This inequality is strictly periodical, since it depends upon the configuration (N.85) of the two planets; and theory is confirmed by observation, which shows that, in the course of twenty centuries, Jupiter’s mean motion has been accelerated by about 3° 23', and Saturn’s retarded by 5° 13'. Several instances of perturbations of this kind occur in the solar system. One, in the mean motions of the Earth and Venus, only amounting to a few seconds, has been recently worked out with immense labour by Professor Airy. It accomplishes its changes in 240 years, and arises from the circumstance of thirteen times the periodic time of Venus being nearly equal to eight times that of the Earth. Small as it is, it is sensible in the motions of the Earth.

It might be imagined that the reciprocal action of such planets as have satellites would be different from the influence of those that have none. But the distances of the satellites from their primaries are incomparably less than the distances of the planets from the sun, and from one another. So that the system of a planet and its satellites moves nearly as if all these bodies were united in their common centre of gravity. The action of the sun, however, in some degree disturbs the motion of the satellites about their primary.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page