Elliptical Motion—Mean and True Motion—Equinoctial—Ecliptic—Equinoxes—Mean and True Longitude—Equation of Centre—Inclination of the Orbits of Planets—Celestial Latitude—Nodes—Elements of an Orbit—Undisturbed or Elliptical Orbits—Great Inclination of the Orbits of the New Planets—Universal Gravitation the Cause of Perturbations in the Motions of the Heavenly Bodies—Problem of the Three Bodies—Stability of Solar System depends upon the Primitive Momentum of the Bodies. A planet moves in its elliptical orbit with a velocity varying every instant, in consequence of two forces, one tending to the centre of the sun, and the other in the direction of a tangent (N.38) to its orbit, arising from the primitive impulse given at the time when it was launched into space. Should the force in the tangent cease, the planet would fall to the sun by its gravity. Were the sun not to attract it, the planet would fly off in the tangent. Thus, when the planet is at the point of its orbit farthest from the sun, his action overcomes the planet’s velocity, and brings it towards him with such an accelerated motion, that at last it overcomes the sun’s attraction, and, shooting past him, gradually decreases in velocity until it arrives at the most distant point, where the sun’s attraction again prevails (N.39). In this motion the radii vectores (N.40), or imaginary lines joining the centres of the sun and the planets, pass over equal areas or spaces in equal times (N.41). The mean distance of a planet from the sun is equal to half the major axis (N.42) of its orbit: if, therefore, the planet described a circle (N.43) round the sun at its mean distance, the motion would be uniform, and the periodic time unaltered, because the planet would arrive at the extremities of the major axis at the same instant, and would have the same velocity, whether it moved in the circular or elliptical orbit, since the curves coincide in these points. But in every other part the elliptical, or true motion (N.44), would either be faster or The orbits of the principal planets have a very small obliquity or inclination (N.53) to the plane of the ecliptic in which the earth moves; and, on that account, astronomers refer their motions to this plane at a given epoch as a known and fixed position. The angular distance of a planet from the plane of the ecliptic is its latitude (N.54), which is south or north according as the planet is south or north of that plane. When the planet is in the plane of the ecliptic, its latitude is zero; it is then said to be in its nodes (N.55). The ascending node is that point in the ecliptic through which the planet passes in going from the southern to the northern hemisphere. The descending node is a corresponding point in the plane of the ecliptic diametrically opposite to the other, through which the planet descends in going from the northern to the southern hemisphere. The longitude and latitude of a planet cannot be obtained by direct observation, but are deduced from observations made at the surface of the Were the planets attracted by the sun only, they would always move in ellipses, invariable in form and position; and because his action is proportional to his mass, which is much larger than that of all the planets put together, the elliptical is the nearest approximation to their true motions. The true motions of the planets are extremely complicated, in consequence of their mutual attraction, so that they do not move in any known or symmetrical curve, but in paths now approaching to, now receding from, the elliptical form; and their radii vectores do not describe areas or spaces exactly proportional to the time, so that the areas become a test of disturbing forces. To determine the motion of each body, when disturbed by all the rest, is beyond the power of analysis. It is therefore necessary to estimate the disturbing action of one planet at a time, By this problem the motions of translation of the celestial bodies are determined. It is an extremely difficult one, and would be infinitely more so if the disturbing action were not very small when compared with the central force; that is, if the action of the planets on one another were not very small when compared with that of the sun. As the disturbing influence of each body may be found separately, it is assumed that the action of the whole system, in disturbing any one planet, is equal to the sum of all the particular disturbances it experiences, on the general mechanical principle, that the sum of any number of small oscillations is nearly equal to their simultaneous and joint effect. On account of the reciprocal action of matter, the stability of the system depends upon the intensity of the primitive momentum (N.59) of the planets, and the ratio of their masses to that of the sun; for the nature of the conic sections in which the celestial bodies move depends upon the velocity with which they were first propelled in space. Had that velocity been such as to make the planets move in orbits of unstable equilibrium (N.60), their mutual attractions might have changed them into parabolas, or even hyperbolas (N.22); so that the earth and planets might, ages ago, have been sweeping far from our sun through the abyss of space. But as the orbits differ very little from circles, the momentum of the planets, when projected, must have been exactly sufficient to ensure the permanency and stability of the system. Besides, the mass of the sun is vastly greater than that of any planet; and as their inequalities bear the same ratio to their elliptical motions that their masses do to that of the sun, their |