Object of Laboratory Practice, Laboratory Note-book, and Suggestions for Laboratory Practice.—The aim of the laboratory practice is to give the students an idea of the composition, uses, and values of food materials, and the part which chemistry takes in sanitation and household affairs; also to enable them by simple tests to detect some of the more common adulterants in foods.
Before performing an experiment, the student is advised to review those topics presented in the text which have a bearing upon the experiment, so that a clear conception may be gained of the relationship between the laboratory work and that of the class room. The student should endeavor to cultivate the power of observation and to grasp the principle involved in the work, rather than do it in a merely mechanical and perfunctory way. Neatness is one of the essentials for success in laboratory practice, and too much emphasis cannot be laid upon this requisite to good work. The student should learn to use his time in the laboratory profitably and economically. He should obtain a clear idea of what he is to do, and then do it to the best of his ability. If the experiment is not a success, repeat it. While the work is in progress it should be given undivided attention. Care should be exercised to prevent anything getting into the sinks that will clog the plumbing; soil, matches, broken glass, and paper should be deposited in the waste jars.
Fig. 72.
Fig. 72.—Apparatus used in Laboratory Work.
See page 301 for names.
A careful record of the experiments should be kept by each student in a suitable note-book. It is suggested that those students desiring more time in writing out the experiments than the laboratory period affords, take notes as they make the various tests, and then amplify and rearrange them in the evening study time. The final writing up of the notes should, however, be done before the next laboratory period. Careful attention should be given to the spelling, language, and punctuation, and the note-book should represent the student's individual work. He who attempts to cheat by copying the results of others, only cheats himself. In recording the results of an experiment, the student should state briefly and clearly the following:
- 1. Number and title of experiment.
- 2. How the experiment is performed.
- 3. What was observed.
- 4. What the experiment proves.
Fig. 73.
Fig. 73.—Balance and Weights.
List of Apparatus used in Experiments
- 1 Crucible Tongs
- 2 Evaporating Dishes
- 1 Casserole
- 6 Beakers
- 12 Test Tubes
- 1 Wooden Stand
- 1 Test Tube Stand
- 1 Sand Bath
- 2 Funnels
- 1 Tripod
- 1 Stoddart Test Tube Clamp
- 1 Test Tube Brush
- 1 Burner and Tubing
- 2 Stirring Rods
- 6 Watch Glasses
- 2 Erlenmeyer Flasks
- 1 Package Filter Paper
- 1 Box Matches
- 1 Wire Gauze
- 2 Burettes
- 1 Porcelain Crucible
- 1 Aluminum Dish
Directions for Weighing.—Place the dish or material to be weighed in the left-hand pan of the balance. With the forceps lay a weight from the weight box on the right-hand pan. Do not touch the weights with the hands. If the weight selected is too heavy, replace it with a lighter weight. Add weights until the pans are counterpoised; this will be indicated by the needle swinging nearly as many divisions on one side of the scale as on the other. The brass weights are the gram weights. The other weights are fractions of a gm. The 500, 200, 100 mg. (milligram) weights are recorded as 0.5, 0.2, and 0.1 gm. The 50, 20, and 10 mg. weights as 0.05, 0.02, and 0.01 gm. If the 10, and 2 gm., and the 200, the 100, and the 50 mg. weights are used, the resulting weight is 12.35 gms. No moist substances should ever come in contact with the scale pans. The weights and forceps should always be replaced in the weight box. Too much care and neatness cannot be exercised in weighing.
Fig. 74.
Fig. 74.
Fig. 75.
Fig. 75.—Pouring
Reagent from Bottle.
Directions for Measuring.—Reagents are measured in graduated cylinders (see Fig. 74). When the directions call for the addition of 5 or 10 cc. of a reagent, unless so directed it is not absolutely necessary to measure the reagent in a measuring cylinder. A large test tube holds about 30 cc. of water. Measure out 5 cc. of water and transfer it to a large test tube. Note its volume. Add approximately 5 cc. of water directly to the test tube. Measure it. Repeat this operation until you can judge with a fair degree of accuracy the part of a test tube filled by 5 cc. In the experiments where a burette is used for measuring reagents, the burette is first filled with the reagent by means of a funnel. The tip of the burette is allowed to fill before the readings are made, which are from the lowest point or meniscus. When reagents are removed from bottles, the stopper should be held between the first and second fingers of the right hand (see Fig. 75). Hold the test tube or receptacle that is to receive the reagent in the left hand. Pour the liquid slowly until the desired amount is secured. Before inserting the stopper, touch it to the neck of the bottle to catch the few drops on the edge, thus preventing their streaking down the sides of the bottle on to the shelf. Replace the bottle in its proper place. Every precaution should be taken to prevent contamination of reagents.
Use of the Microscope.—Special directions in the use of the microscope will be given by the instructor. The object or material to be examined is placed on a microscopical slide. Care should be exercised to secure a representative sample, and to properly distribute the substance on the slide. If a pulverized material is to be examined, use but little and spread it in as thin a layer as possible. If a liquid, one or two drops placed on the slide will suffice. The material on the slide is covered with a cover glass, before it is placed on the stage of the microscope. In focusing, do not allow the object glass of the microscope to come in contact with the cover glass. Focus upward, not downward. Special care should be exercised in focusing and in handling the eye-piece and objective. A camel's-hair brush, clean dry chamois skin, or clean silk only should be used in polishing the lenses. Always put the microscope back in its case after using.
Experiment No. 1
Water in Flour
Carefully weigh a porcelain or aluminum dish. (Porcelain must be used if the ash is to be determined on the same sample.) Place in it about 2 gm. of flour; record the weight; then place the dish in the water oven for at least 6 hours. After drying, weigh again, and from the loss of weight calculate the per cent of water in the flour. (Weight of flour and dish before drying minus weight of flour and dish after drying equals weight of water lost. Weight of water divided by weight of flour taken, multiplied by 100, equals the per cent of water in the flour.)
How does the amount of water you obtained compare with the amount given in the tables of analysis?
Experiment No. 2
Water in Butter
Carefully weigh a clean, dry aluminum dish, place in it about 2 gms. of butter, and weigh again. Record the weights. Place the dish containing butter in the water oven for 5 or 6 hours and then weigh. The loss in weight represents the water in the butter. Calculate the per cent of water. Care must be taken to get a representative sample of the butter to be tested; preferably small amounts should be taken with the butter trier from various parts of the package.
Experiment No. 3
Ash in Flour
Place the porcelain dish containing flour from the preceding experiment in a muffle furnace and let it remain until the organic matter is completely volatilized. Cool, weigh, and determine the per cent of ash. The flour should be burned at the lowest temperature necessary for complete combustion.
Experiment No. 4
Nitric Acid Test for Nitrogenous Organic Matter
To 3 cc. of egg albumin in a test tube add 2 cc. of HNO3 (conc.) and heat. When cool add NH4OH. The nitric acid chemically reacts upon the albumin, forming yellow xanthoprotein. What change occurs in the appearance of the egg albumin when the HNO3 is added? Is this a physical or chemical change? What is the name of the compound formed? What change occurs on adding NH4OH?
Experiment No. 5
Acidity of Lemons
With a pipette measure into a small beaker 2 cc. of lemon juice. Add 25 cc. of water and a few drops of phenolphthalein indicator. From the burette run in N/10 KOH solution until a faint pink tinge remains permanently. Note the number of cubic centimeters of KOH solution required to neutralize the citric acid in the lemon juice. Calculate the per cent of citric acid.
(1 cc. of N/10 KOH solution equals 0.00642 gm. citric acid. 1 cc. of H2O weighs 1 gm. Because of sugar and other matter in solution 1 cc. of lemon juice weighs approximately 1.03 gm.)
1. What is the characteristic acid of lemons? 2. What is the salt formed when the lemon juice is neutralized by the KOH solution? 3. Describe briefly the process for determining the acidity of lemon juice. 4. What per cent of acidity did you obtain? 5. How does this compare with the acidity of vinegar?
Experiment No. 6
Influence of Heat on Potato Starch Grains
With the point of a knife scrape slightly the surface of a raw potato and place a drop of the starchy juice upon the microscopical slide. Cover with cover glass and examine under the microscope.
In the evaporating dish cook a small piece of potato, then place a very small portion upon the slide, and examine with the microscope.
Make drawings of the starch grains in raw and in cooked potatoes.
Experiment No. 7
Influence of Yeast on Starch Grains
Moisten a small portion of the dough prepared with yeast and with the stirring rod place a drop of the starchy water upon the slide. Cover with cover glass and examine under the microscope.
Repeat, examining a drop of starchy water washed from flour.
Make drawing of wheat starch grain in flour and in dough prepared with yeast.
Experiment No. 8
Mechanical Composition of Potatoes
Wash one potato. Weigh, then peel, making the peeling as thin as possible. Weigh the peeled potato and weigh the peeling or refuse. Calculate the per cent of potato that is edible and the per cent that is refuse.
Experiment No. 9
Pectose from Apples
Reduce a small peeled apple to a pulp. Squeeze the pulp through a clean cloth into a beaker. Add 10 cc. H2O and heat on a sand bath to coagulate the albumin. Filter, adding a little hot water if necessary. To the filtrate add 5 cc. alcohol. The precipitate is the pectose material.
1. Is the pectose from the apple soluble? 2. Is it coagulated by heat? 3. Is it soluble in alcohol?
Experiment No. 10
Lemon Extract
To 5 cc. of the extract in a test tube add an equal volume of water. A cloudy appearance indicates the presence of lemon oil. If the solution remains clear after adding the water, the extract does not contain lemon oil.
Why does the extract containing lemon oil become cloudy on adding water?
Experiment No. 11
Vanilla Extract
Pour into a test tube 5 cc. of the extract to be tested. Evaporate to one third. Then add sufficient water to restore the original volume. If a brown, flocculent precipitate is formed, the sample contains pure vanilla extract. Resin is present in vanilla beans and is extracted in the essence. The resin is readily soluble in 50 per cent alcohol. If the alcohol is removed from the extract, the excess of resin is precipitated, or if free from alkali, it may be precipitated by diluting the original solution with twice its volume of water. Test the two samples and compare.
(Adapted from Leach, "Food Inspection and Analysis.")
1. Describe the appearance of each sample after evaporating and adding water. 2. Which sample contains pure vanilla extract? 3. State the principle underlying this test.
Experiment No. 12
Testing Olive Oil for Cotton Seed Oil
Pour into a test tube 5 cc. of the oil to be tested and 5 cc. of Halphen's Reagent. Mix thoroughly. Plug the test tube loosely with cotton, and heat in a bath of boiling saturated brine for 15 minutes. If cotton seed oil is present, a deep red or orange color is produced. Test two samples and compare.
Halphen's Reagent.—Mix equal volumes of amyl alcohol and carbon disulphid containing about one per cent of sulphur in solution.
(Adapted from Leach, "Food Inspection and Analysis.")
Experiment No. 13
Testing for Coal Tar Dyes
Dilute 20 to 30 cc. of the material to 100 cc.; boil for 10 minutes with 10 cc. of a 10 per cent solution of potassium bisulphate and a piece of white woolen cloth which has previously been boiled in a 0.1 per cent solution of NaOH and thoroughly washed in water. Remove the cloth from the solution, wash in boiling water, and dry between pieces of filter paper. A bright red indicates coal tar dye. If the coloring matter is entirely from fruit, the woolen cloth will be either uncolored or will have a faint pink or brown color which is changed to green or yellow by ammonia and is not restored by washing. This is the Arata test.
(Adapted, Winston, Conn. Experiment Station Report.)
1. Describe Arata's wool test for coal tar dyes. 2. What is the appearance of the woolen cloth when the coloring matter is entirely from fruit? 3. What effect has NH4OH upon the color? 4. Why is NaOH used? 5. Why may not cotton cloth be used instead of woolen? 6. What can you say of the use of coal tar dyes in foods?
Experiment No. 14
Determining the Per Cent of Skin in Beans
Place in an evaporating dish 10 gm. of beans, 50 cc. of water, and ½ gm. of baking soda. Boil 10 minutes or until the skins are loosened, then drain off the water. Add cold water and rub the beans together till the skins slip off. Collect the skins, place on a watch glass and dry in the water oven for ½ hour. Weigh the dried skins and calculate the per cent of "skin."
1. What does the soda do? 2. What effect would hard limewater have upon the skins? 3. How does removal of skins affect food value of beans and digestibility?
Experiment No. 15
Extraction of Fat from Peanuts
Shell three or four peanuts and with the mortar and pestle break them into small pieces. Place in a test tube and pour over them about 10 cc. of ether. Cork the test tube and allow it to stand 30 minutes, shaking occasionally. Filter on to a watch glass and let stand until the ether evaporates, and then observe the fat.
1. What is the appearance of the peanut fat? 2. What is the solvent of the fat? 3. What becomes of the ether? 4. Why should the peanuts be broken into small pieces?
Experiment No. 16
Microscopic Examination of Milk
Place a drop of milk on a microscopical slide and cover with cover glass. Examine the milk to detect impurities, as dust, hair, refuse, etc. Make drawings of any foreign matter present.
Experiment No. 17
Formaldehyde in Cream or Milk
To 10 cc. of milk in a casserole add 10 cc. of the acid reagent. Heat slowly over the flame nearly to boiling, holding the casserole in the hand and giving it a slight rotary movement while heating. The presence of formaldehyde is indicated by a violet coloration varying in depth with the amount present. In the absence of formaldehyde the solution slowly turns brown.
Acid Reagent.—Commercial hydrochloric acid (sp. gr. 1.2) containing 2 cc. per liter of 10 per cent ferric chlorid.
(Adapted from Leach, "Food Inspection and Analysis.")
1. How may the presence of formaldehyde in milk be detected? 2. Why in this test is it necessary to use acid containing ferric chlorid? 3. Describe the appearance of the two samples of milk after adding the acid reagent and heating. 4. Which sample showed the presence of formaldehyde?
Experiment No. 18
Gelatine in Cream or Milk
To 20 cc. of milk or cream in a beaker add 20 cc. of acid mercuric nitrate and about 40 cc. of H2O. Let stand for a few minutes and filter. Filtrate will be cloudy if gelatine is present.
Add ½ cc. of a dilute solution of picric acid—a heavy yellow precipitate indicates gelatine.
Acid Mercuric Nitrate.—1 part by weight of Hg, 2 parts HNO3 (sp. gr. 1.42). Dilute 25 times with water.
Experiment No. 19
Testing for Oleomargarine
Apply the following tests to two samples of the material:
Boiling or Spoon Test.—Melt the sample to be tested—a piece about the size of a chestnut—in a large spoon, hastening the process by stirring with a splinter. Then, increasing the heat, bring to as brisk a boil as possible and stir thoroughly, not neglecting the outer edges. Oleomargarine and renovated butter boil noisily, sputtering like a mixture of grease and water, and produce no foam, or but very little. Genuine butter boils with less noise and produces an abundance of foam.
Waterhouse Test.—Into a small beaker pour 50 cc. of sweet milk. Heat nearly to boiling and add from 5 to 10 gms. of butter or oleomargarine. Stir with a glass rod until fat is melted. Then place the beaker in cold water and stir the milk until the temperature falls sufficiently for the fat to congeal. At this point the fat, if oleomargarine, can easily be collected into one lump by means of the rod; while if butter, it will granulate and cannot be collected.
(From Farmers' Bul. 131, U. S. Dept. of Agriculture.)
1. Name two simple tests for distinguishing butter and oleomargarine. 2. Describe these tests. 3. Why do butter and oleomargarine respond differently to these tests? 4. Are these tests based upon chemical or physical properties of the fats?
Experiment No. 20
Testing for Watering or Skimming of Milk
a. Fat Content of Milk by Means of Babcock Test.—Measure with pipette into test bottle 17.6 cc. of milk. Sample should be carefully taken and well mixed. Measure with cylinder 17.5 cc. commercial H2SO4 and add to milk in test bottle. (See Fig. 25.) Mix acid and milk by rotating the bottle. Then place test bottles in centrifugal machine and whirl 5 minutes. Add sufficient hot water to test bottles to bring contents up to about the 8th mark on stem. Then whirl bottles 2 minutes longer and read fat. Read from extreme lowest to highest point. Each large division as 1 to 2 represents a whole per cent, each small division 0.2 of a per cent.
b. Determining Specific Gravity by Means of Lactometer.—Pour 150 cc. of milk into 200 cc. cylinder. Place lactometer in milk and note depth to which it sinks as indicated on stem. Note also temperature of milk. For each 10° above 60° F. add 1 to the lactometer number, in order to make the necessary correction for temperature. For example, if milk has sp. gr. of 1.032 at temperature of 70°, it will be equivalent to sp. gr. of 1.033 at 60°. Ordinarily milk has a sp. gr. of 1.029 to 1.034. If milk has sp. gr. less than 1.029, or contains less than 3 per cent fat, it may be considered watered milk. If the milk has a high sp. gr. (above 1.035) and a low content of fat, some of the fat has been removed.
(For extended direction for milk testing see Snyder's "Dairy Chemistry.")
Experiment No. 21
Boric Acid in Meat
Cut into very small pieces 5 gms, of meat, removing all the fat possible. Place in an evaporating dish with 20 to 25 cc. of water to which a few drops of HCl have been added and warm slightly. Dip a piece of turmeric paper in the meat extract and dry. A rose-red color of the turmeric paper after drying (turned olive by a weak ammonia solution) is indicative of boric acid.
1. How may meat be tested for boric acid? 2. Why is HCl added to the water? 3. Why is the water containing the meat warmed slightly? 4. What is the appearance of the turmeric paper after being dipped in the meat extract and dried? 5. What change takes place when it is moistened with ammonia, and why?
Experiment No. 22
Microscopic Examination of Cereal Starch Grains
Make a microscopic examination and drawings of wheat, corn, rice, and oat starch grains, comparing them with the drawings of the different starch grains on the chart. If the material is coarse, pulverize in a mortar and filter through cloth. Place a drop or two of the starchy water on the slide, cover with a cover glass, and examine.
Experiment No. 23
Identification of Commercial Cereals
Examine under the microscope two samples of cereal breakfast foods, and by comparison with the wheat, corn, and oat starch grains previously examined tell of what grains the breakfast foods are made and their approximate food value.
Experiment No. 24
Granulation and Color of Flour
Arrange on glass plate, in order of color, samples of all the different grades of flour. Note the differences in color. How do these differences correspond with the grades of the flour? Examine the flour with a microscope, noting any coarse or dark-colored particles of bran or dust. Rub some of the flour between the thumb and forefinger. Note if any granular particles can be detected.
Experiment No. 25
Capacity of Flour to absorb Water
Weigh out 15 gms. of soft wheat flour into an evaporating dish; then add from burette a measured quantity of water sufficient to make a stiff dough. Note the amount of water required for this purpose. Repeat the operation, using hard wheat flour.
1. How may the absorptive power of a flour be determined? 2. To what is it due? 3. Why do some flours absorb more water than others?
Experiment No. 26
Acidity of Flour
Weigh into a flask 20 gms. of flour and add 200 cc. distilled water. Shake vigorously. After letting stand 30 minutes, filter and then titrate 50 cc. of the filtrate against standard KOH solution, using phenolphthalein as indicator, 1 cc. of the alkali equals 0.009 gms. lactic acid. Calculate the per cent of acid present.
1. How may the acidity of a flour be determined? 2. The acidity is expressed in percentage amounts of what acid? 3. What per cent of acidity is found in normal flours? 4. What does a high acidity of a flour indicate?
Experiment No. 27
Moist and Dry Gluten
Weigh 30 gms. of flour into a porcelain dish. Make the flour into a stiff dough. After 30 minutes obtain the gluten by washing, being careful to remove all the starch and prevent any losses. Squeeze the water from the gluten as thoroughly as possible. Weigh the moist gluten and calculate the per cent. Dry the gluten in the water oven and calculate the per cent of dry gluten.
Experiment No. 28
Gliadin from Flour
Place in a flask 10 gms. of flour, 30 cc. of alcohol, and 20 cc. of water. Cork the flask and shake, and after a few minutes shake again. Allow the alcohol to act on the flour for an hour, or until the next day. Then filter off the alcohol solution and evaporate the filtrate to dryness over the water bath. Examine the residue; to a portion add a little water; burn a small portion and observe odor.
1. Describe the appearance of the gliadin. 2. What was the result when water was added? 3. When burned, what was the odor of the gliadin, and what does this indicate? 4. What is gliadin?
Experiment No. 29
Bread-making Test
Make a "sponge" by mixing together:
- 12 gm. sugar,
- 12 gm. yeast (compressed),
- 4 gm. salt,
- 175 cc. water (temp. 32° C.).
Let stand ½ hour at a temperature of 30° C. In a large bowl, mix with a knife or spatula 7.7 gms. of lard with 248.6 gms. of flour. Then add 160 cc. of the "sponge," or as much as is needed to make a good stiff dough, and mix thoroughly, using the spatula. With some flours as small a quantity as 150 cc. of sponge may be used. If more moisture is necessary, add H2O. Keep at temperature of 30° C. Allow the dough to stand 50 minutes to first pulling, 40 minutes to second pulling, and 30 to 50 minutes to the pan. Let it rise to top of pan and then bake for ½ hour in an oven at a temperature of 180° C. One loaf of bread is made of patent flour of known quality as a standard for comparison, and other loaves of the flours to be tested. Compare the loaves as to size (cubic contents), color, porosity, odor, taste, nature of crust, and form of loaf.
Experiment No. 30
Microscopic Examination of Yeast
On a watch glass mix thoroughly a very small piece of yeast with about 5 cc. of water and then with the stirring rod place a drop of this solution on the microscopical slide, adding a drop of very dilute methyl violet solution. Cover with the cover glass and examine under the microscope. The living active cells appear colorless while the decayed and lifeless ones are stained. Yeast cells are circular or oval in shape. (See Fig. 46.)
(Adapted from Leach, "Food Inspection and Analysis.")
Experiment No. 31
Testing Baking Powders for Alum
Place about 2 gms. of flour in a dish with ½ gm. baking powder. Add enough water to make a dough and then 2 or 3 drops of tincture of logwood and 2 or 3 drops of ammonium carbonate solution. Mix well and observe; a blue color indicates alum. Try the same test, using flour only for comparison.
1. How do you test a baking powder for alum? 2. What difference in color did you observe in the test with the baking powder containing alum and in that with the flour only? 3. Why is the (NH4)2CO3 solution used?
Experiment No. 32
Testing Baking Powders for Phosphoric Acid
Dissolve ½ gm. of baking powder in 5 cc. of H2O and 3 cc. HNO3. Filter and add 3 cc. ammonium molybdate. Heat gently. A yellow precipitate indicates phosphoric acid.
1. How do you test a baking powder for phosphoric acid? 2. What is the yellow precipitate obtained in this test?
Experiment No. 33
Testing Baking Powders for Ammonia
Dissolve ½ gm. of material in 10 cc. water; filter off any insoluble residue and to the filtrate add 2 or 3 cc. NaOH and apply heat. Test the gas given off with moistened turmeric paper. If NH3 is present, the paper will be colored brown. Do not allow the paper to come in contact with the liquid or sides of the test tube. (Perform the tests on two samples of baking powder.)
1. How do you test a baking powder for ammonia? 2. Why do you add NaOH? 3. Why must you be careful not to let the turmeric paper touch the sides of the test tube or the liquid?
Experiment No. 34
Vinegar Solids
Into a weighed aluminum or porcelain dish pour 10 cc. of vinegar. Weigh and then evaporate over boiling water. To drive off the last traces of moisture dry in the water oven for an hour. Cool and weigh. Calculate the per cent of solids. Observe the appearance of the solids. Test both samples and compare.
1. How may the per cent of solids in vinegar be determined? 2. Describe the appearance of the solids from the good and from the poor sample of vinegar. 3. What is the legal standard for vinegar solids in your state?
Experiment No. 35
Specific Gravity of Vinegar
Pour 170 cc. vinegar into 200 cc. cylinder. Place a hydrometer for heavy liquids (sp. gr. 1 to 1.1) in the cylinder. Note the depth to which it sinks and the point registered on the scale on the stem. Note temperature of vinegar. Record specific gravity of vinegar.
1. What effect would addition of water to vinegar have upon its specific gravity? 2. What effect would addition of such material as sugar have upon specific gravity? 3. Why should the specific gravity of vinegar be fairly constant? 4. What would be the weight of 1000 cc. of vinegar calculated from the specific gravity?
Experiment No. 36
Acidity of Vinegar
Into a small beaker pour 6 cc. of vinegar and 10 cc. of water and a few drops of phenolphthalein indicator. Run in standard KOH solution from a burette until a faint pink tinge remains permanently. Note the number of cubic centimeters of KOH solution required to neutralize the acid. Divide this number by 10, which will give approximately the per cent of acetic acid.
1. How may the per cent of acidity of vinegar be determined? 2. Why was phenolphthalein used? 3. Why was KOH used? 4. What acids does vinegar contain? 5. What is the legal requirement in this state for acetic acid in vinegar? 6. How did the acidity you obtained compare with this legal requirement?
Experiment No. 37
Deportment of Vinegar with Reagents
To 10 cc. of vinegar in a test tube add 8 or 10 drops of lead sub-acetate and shake. Observe the precipitate. Lead sub-acetate precipitates mainly the malic acid which is always present in cider vinegar.
1. How may the presence of malic acid in a vinegar be detected? 2. Describe the precipitate. 3. What does malic acid in a vinegar indicate?
Experiment No. 38
Testing Mustard for Turmeric
Place 1 gm. of ground mustard on a small watch glass and moisten slightly with water. Add 2 or 3 drops of NH4OH, stirring well with a glass rod. A brown color indicates turmeric present in considerable quantity.
Test a sample of good mustard and one adulterated with turmeric and compare the results.
Experiment No. 39
Examination of Tea Leaves
Soak a small amount of tea and unroll 8 or 10 of the leaves. Make a drawing of a tea leaf. Observe the proportion of stems in each of three samples of tea; also the relative proportion of large and small leaves. Observe if the leaves are even as to size and of a uniform color.
Experiment No. 40
Action of Iron Compounds upon Tannic Acid
Make an infusion of tea by placing 3 gms. of tea in 100 cc. of hot water and stirring well. Filter off some of the infusion and test 5 cc. with ferrous sulphate solution made by dissolving 1 gm. FeSO4 in 10 cc. H2O and filtering. Note the result.
1. What change in color did you observe when the ferrous sulphate solution was added to the tea infusion? 2. What effect would waters containing iron have upon the tea infusion?
Experiment No. 41
Identification of Coffee Berries
Examine Rio, Java, and Mocha coffee berries. Describe each. Note the characteristics of each kind of coffee berry.
Experiment No. 42
Detecting Chicory in Coffee
Fill a beaker with water and place about a teaspoonful of ground coffee on the surface. If much of the ground material sinks and it imparts a dark brown color to the lower portion of the liquid, it is an indication of the presence of chicory. Pure coffee floats on water. Chicory has a higher specific gravity than coffee.
1. How may the presence of chicory in ground coffee be detected? 2. Why does coffee float on the water while chicory sinks? 3. What effect does chicory have upon the color of water?
Experiment No. 43
Testing Hard and Soft Waters
Partially fill a large cylinder with very hard water. This may be prepared by dissolving 0.1 to 0.2 gm. calcium chloride in 500 cc. of ordinary water. Add to this a measured quantity of soap solution. Mix well and notice how many cubic centimeters of soap solution must be used before a permanent lather is formed, also notice the precipitate of "lime soap." Repeat this experiment, using either rain or distilled water, and compare the cubic centimeters of soap solution used with that in former test. Repeat the test, using tap water.
Soap Solution.—Scrape 10 gms. of castile soap into fine shavings and dissolve in a liter of alcohol, dilute with 1/3 water. Filter if not clear and keep in a tightly stoppered bottle.
1. Why is more soap required to form a lather with hard water than with soft water? 2. What is meant by "lime soap"? Describe its appearance. 3. How may hard waters be softened for household purposes?
Experiment No. 44
Solvent Action of Water on Lead
Put 1 gm. of clean bright lead shavings into a test tube containing 10 cc. of distilled water. After 24 hours decant the clear liquid into a second test tube, acidify slightly with HCL, and add a little hydrogen sulphid water. A black or brownish coloration indicates lead in solution.
(Adapted from Caldwell and Breneman, "Introductory Chemical Practice.")
Under what conditions may lead pipes be objectionable?
Experiment No. 45
Suspended Matter in Water
Place a drop of water on the microscopical slide, cover with cover glass, and examine with the microscope. Note the occurrence and appearance of any suspended matter in the water.
Experiment No. 46
Organic Matter in Water
Pour into the evaporating dish 100 cc. H2O and evaporate to dryness over the sand bath. Ignite the solids. If the solids blacken when ignited, the water contains organic matter.
Experiment No. 47
Deposition of Lime by Boiling Water
Boil for a few minutes about 200 cc. of water in a flask. After the water is cool, note any sediment of lime or turbidity of the water due to expelling the carbon dioxid.
1. What is meant by a "hard" water? 2. What do the terms "temporary" and "permanent" hardness of water mean? 3. What acts as a solvent of the lime in water? 4. Why does boiling cause the lime to be deposited?
Experiment No. 48
Qualitative Tests for Minerals in Water
Test for Chlorids.—To 10 cc. of H2O add a few drops of HNO3 and 2 cc. of AgNO3. A white precipitate indicates the presence of chlorids, usually in the form of sodium chlorid.
Test for Sulphates.—To 10 cc. of water add 2 cc. of dilute HCl and 2 cc. of BaCl2. A cloudiness or the formation of a white precipitate indicates the presence of sulphates.
Test for Iron.—If a brown sediment is formed in water exposed to the air for some time, it is probably iron hydroxid. To 10 cc. of the water add a few drops of HNO3, heat, and then add ½ cc. of NH4CNS. A red color indicates the presence of iron.
Test for CaO and MgO.—To 10 cc. of H2O add 5 cc. NH4OH. If a precipitate forms, filter it off, and to the filtrate add 3 cc. NH4Cl and 5 cc. (NH4)2C2O4. The precipitate is CaC{2}O4, and the filtrate contains the magnesia. Filter and add 5 cc. Na3PO4 to precipitate MgNH4PO4.
1. How would you test a water to detect the presence of organic matter? 2. Name some mineral impurities often found in water. 3. Describe the test for chlorids; for sulphates; for iron; for lime; for magnesium. 4. Of the two classes of impurities found in water, which is the more harmful? 5. Name three ways of purifying waters known to be impure, and tell which is the most effectual.
Experiment No. 49
Testing for Nitrites in Water
To 50 cc. of water in a small beaker add with a pipette 2 cc. of naphthylamine hydrochloride and then 2 cc. of sulphanilic acid. Stir well and wait 20 minutes for color to develop. A pink color indicates nitrites.
Reagents Used
Sulphanilic Acid.—Dissolve 5 gm. in 150 cc. of dilute acetic acid; sp. gr. 1.04.
Naphthylamine Hydrochloride.—Boil 0.1 gm. of solid α-amidonaphthaline (naphthylamine) in 20 cc. of water, filter the solution through a plug of absorbent cotton, and mix the nitrate with 180 cc. of dilute acetic acid. All water used must be free from nitrites, and all vessels must be rinsed out with such water before tests are applied.
1. Would a water showing the presence of nitrites be a safe drinking water? Why? 2. What are nitrites? 3. What does the presence of nitrites indicate? 4. Are small amounts of nitrites, when not associated with bacteria, injurious?