CHAPTER II Forerunners of the Allied Dirigibles

Previous

It is to the two French brothers Lebaudy that France and the Allies owe the credit for the development of the big military dirigible such as is used in the present War. These brothers were wealthy and full of enthusiasm for aeronautics. From a distance they had watched the achievements of Santos-Dumont and they determined to expend every possible effort to excel him in the construction of dirigibles. In 1899 they commissioned an experienced engineer named Jouillot to make a study of the problem, to discover if possible why previous experimenters had failed to produce a model of satisfactory speed and power, and to draw up designs for an airship which should correct the faults of those already known.

It took two years before a finger could be lifted toward the actual building, but finally in 1901 the work of constructing the first Lebaudy airship commenced. It was ready for a tryout in November, 1902. The envelope was of bright yellow calico: it was cigar-shaped, 187 feet long and 32 feet in diameter. The envelope was fastened at the bottom to a rigid floor-work of steel tubing and from this the car was suspended. The dirigible was fitted with a 40 horse power benzine motor; and its total weight, including a supply of benzine, water and ballast, was two and one-half tons.

During the next year this dirigible made at least 30 trips, at very fair speed. Meanwhile the builders were studying it in every detail, working out ideas for improvements and drawing up plans for their next model. In 1904 they built their second airship. It was somewhat longer than the first and about the same shape, but the pointed end at the rear had been rounded off. Calico was again used for the covering of the envelope, and it was made absolutely air-tight by coating it inside and out with rubber. Besides the main valve there were safety valves in the envelope for allowing the gas to escape when the pressure became too great. The envelope was also provided with two small windows, so that the inside of the balloon could be easily inspected. It had sails to give it greater stability, and two movable sail-like rudders, placed together at a V-shaped angle. The driver could alter the position of the sails and the rudder according to the wind.

The car of this Lebaudy airship was boat-shaped with a flat bottom. To diminish the shock in case of a fall steel tubing was placed in a slanting position beneath it in a pyramid arrangement, the point facing downwards. The car was set very close to the envelope or body of the airship, and carried the 40 horse power benzine engine. At the front of the car was an electrically worked camera, a 1,000,000 candle power acetylene projector providing lighting by night.

Many improvements were later added to this second dirigible which was christened the Lebaudy. The interest of the French Minister of War was aroused and he appointed a commission from the Balloon Corps to follow the progress of the experiments.

Every one now began to look upon the dirigible as a factor to be reckoned with in the event of a war. The Lebaudy brothers offered their airship to the French government, and after it had accomplished a series of tests to prove its value as an instrument of war, it was accepted, and became a model for later airship construction.

Germany was not far behind, for already Count von Zeppelin's second airship had proved itself a success, and plans were being laid for a third. From this time on the two European nations destined to become powerful adversaries in the World War, though working along somewhat different lines, kept almost neck and neck in their struggle for air supremacy.

The French military balloon department began at once the work of constructing an airfleet with the Lebaudy as a model and with the engineer Jouillot as chief adviser, this work went forward with great rapidity. The Lebaudy was followed in design pretty closely, but a few changes were made which experience had suggested. For one thing the balloon envelope was rounded at the front and pointed at the rear, exactly the reverse of the Lebaudy model, as this arrangement was thought to offer less resistance to the air. It had an internal air-bag or ballonet whose capacity was one-fifth that of the envelope. This ballonet was of course empty on the ascent. It was calculated that the balloon could reach a height of about a mile. To descend, gas would then be allowed to escape, and, in order to keep the envelope fully inflated, air would be pumped into the ballonet.

This first type of dirigible actually constructed by the French army was called the Patrie. It was 197 feet long and carried a benzine motor of from 30 to 40 horse power, which drove the two double-bladed steel propellers. As in the case of the Lebaudy, the Patrie was protected from injury by a strong steel framework, coming to a point below the car. In case of a sudden drop, this point would strike the ground first and ward off the blow from the car, and the propellers. Good as this plan seemed, it did not always work. The Patrie, after many successful journeys, met with an accident to her motor, escaped her guard of soldiers and drifted off alone. She crossed the English Channel and fell in Ireland, breaking off her propeller. Before she could be captured she rose again into the air, drifted out over the sea and was never again heard from.

M. Deutsch, who had done so much to encourage the efforts of Santos-Dumont, stepped forward in the emergency and offered the French government his airship the Ville de Paris. This had been designed for him by an engineer named Tatin. It was 200 feet long, made of German Continental Rubber Fabric, and, like the Patrie, had an internal air-bag of one-fifth its capacity. In one important respect it was different from those that preceded it. At its stern it had eight small cylinders, or ballonets, filled with gas, which added greatly to its stability, though they detracted from its speed by causing a considerable resistance to the air.

While the car of the Patrie was about 16 feet long, this new airship had a car measuring 115 feet, and the propeller was at the front, so that as it revolved it drew rather than pushed the car through the air. A propeller of this sort is termed a “tractor,” and figures to-day in many models of aircraft.

During these years of experiment in France, England and America had looked on in comparative idleness. In 1902 England did indeed possess one small airship, designed by Colonel Templer of the Army Balloon Department, and christened the Nulli Secundus (Second to None). She was “sausage shaped:” rounded at the front and pointed at the stern with a peculiar rudder design. Her car was boat-shaped and her propellers were aluminum, both revolving in the same direction, which gave her a curious tendency to “somersault.” In spite of their “baby” dirigible's rather pretentious title, the military authorities, and the English public in general, evidently took slight store in the infant prodigy, for from 1902 to 1908, she only came out of her shed for a few short trips. In 1908 she was completely remodelled, and emerged for a trial trip. But neither the government nor the public seemed interested in Colonel Templer's schemes. The valiant little pioneer ship of England's airfleet went back to her sheds, resigning herself to obscurity.

Our own country, which in many other lines has led the world in its mechanical skill and enterprise, did not have a single army dirigible till as late as 1908, when it gave out a contract for an airship which was built by Captain Thomas S. Baldwin. The motor was designed and built by a young mechanic in Hammondsport, N. Y., who for several years had been manufacturing motors for automobiles. His name was Glenn Curtiss and he afterward became one of the world's most famous aviators.

United States Army Dirigible No. 1 was long and cylindrical, pointed at both ends, and covered with Japanese silk, vulcanized with rubber. The water-cooled Curtiss motor was a 20 horse power, and the wooden propeller was of the “tractor” type, placed in the front of the car.

Germany, while America and England stood idle, had been rapidly forging ahead. By 1908 Count von Zeppelin had constructed his third and fourth models, and his public demonstrations had aroused the whole German people to unbounded enthusiasm. The Crown Prince made a trip in Zeppelin No. 3 and its originator was decorated with the Order of the Black Eagle. The German Association for an Aerial Fleet was formed, and within a short time over a million dollars had been contributed by the people for the purpose of building dirigibles.

Zeppelin No. 4 was destroyed by an accident, but Zeppelin No. 3 was recalled into the national service and in 1909 given the official title of S.M.S. Zeppelin I. From this time on dirigible construction in Germany went forward with the greatest speed. Two other names became prominent in the enterprise: those of Major von Parseval and Major von Gross. The “Parseval” design resembled more the French, for it was covered with “Continental fabric,” was long and cylindrical, rounded at the front and pointed at the stern, with a large internal air ballonet. The car was suspended from two steel cables or trolleys, which it could slide along, altering its position and the “balance” of the whole airship.

The “Gross” type of airship resembled the Lebaudy and the Patrie, with its boat-shaped car hung from a steel platform attached to the bottom of the envelope.

Out of this brief story of the development of the early airship models of all the nations, we can, if we look carefully, see certain definite types of dirigibles emerging. The experimenters had to solve this problem: What shall we do when owing to loss of gas the balloon envelope begins to get flabby? For of course a flabby, partially filled envelope would flop from side to side, destroying the balance of the airship and checking its speed.

BALDWIN U. S. “DIRIGIBLE NO. 1”

The German inventors settled the problem by making the envelope rigid, either with a solid covering or with a covering of fabric stretched over an inner framework. Thus the rigid type of airship was evolved.

The French inventors solved the same problem by placing inside the envelope a large empty bag of fabric, into which air could be pumped when necessary to fill the balloon out and hold the envelope firm. The air could not be pumped directly into the envelope itself as it would produce an explosive mixture with the gas already there. From this method of dealing with difficulty, the non-rigid type of dirigible was evolved.

see caption

THE BRITISH ARMY “BABY” DIRIGIBLE

But the non-rigid dirigible presented a new difficulty: how could the car be suspended from it in such a way that it would not swing? For only with a rigid connection between the car and the envelope could the greatest speed be obtained. The Lebaudy solved this problem by attaching to the base of the envelope a rigid steel flooring, from which the car could then be suspended by an immovable connection. And so was evolved the semi-rigid type of airship.

In recent years another solution of this problem of preventing the car from swinging has been employed to some extent: By making the car almost as long as the envelope, the connecting cables by which the car is suspended hang almost perpendicular, and there is not the same tendency to swerve as with cables slanting down to a comparatively small car. This type of airship is called the demi-semi-rigid.

These then are the four general classes of dirigibles which were used in the Great War.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page