LECTURE V ACIDS AND ALKALIS

Previous

Properties of Acids and Alkalis.—The name acids is given to a class of substances, mostly soluble in water, having an acid or sour taste, and capable of turning blue litmus solution red. All acids contain one or more atoms of hydrogen capable of being replaced by metals, and when such hydrogen atoms are completely replaced by metals, there result so-called neutral or normal salts, that is, neutral substances having no action on litmus solution. These salts can also be produced by the union of acids with equivalent quantities of certain metallic oxides or hydroxides, called bases, of which those soluble in water are termed alkalis. Alkalis have a caustic taste, and turn red litmus solution blue.

In order to explain what is called the law of equivalence, I will remind you of the experiment of the previous lecture, when a piece of bright iron, being placed in a solution of copper sulphate, became coated with metallic copper, an equivalent weight of iron meanwhile suffering solution as sulphate of iron. According to the same law, a certain weight of soda would always require a certain specific equivalent weight of an acid, say hydrochloric acid, to neutralise its alkaline or basic properties, producing a salt.

The specific gravities of acids and alkalis in solution are made use of in works, etc., as a means of ascertaining their strengths and commercial values. Tables have been carefully constructed, such that for every degree of specific gravity a corresponding percentage strength of acidity and alkalinity may be looked up. The best tables for this purpose are given in Lunge and Hurter's Alkali-Makers' Pocket-Book, but for ordinary purposes of calculation in the works or factory, a convenient relationship exists in the case of hydrochloric acid between specific gravity and percentage of real acid, such that specific gravity as indicated by Twaddell's hydrometer directly represents percentage of real acid in any sample of hydrochloric acid.

The point at which neutralisation of an acid by alkali or vice vers just takes place is ascertained very accurately by the use of certain sensitive colours. At first litmus and cochineal tinctures were used, but in testing crude alkalis containing alumina and iron, it was found that lakes were formed with these colours, and they become precipitated in the solution, and so no longer sensitive. The chemist was then obliged to resort to certain sensitive coal-tar colours, which did not, as the dyer and printer knew, form lakes with alumina and iron, such as methyl orange, fluorescein, Congo red, phenolphthalein, and so forth. For determining the alkalimetric strength of commercial sodas, a known weight of the sample is dissolved in water, and a few drops of a solution of methyl orange are added, which colour the solution yellow or orange. Into this solution is then run, from a burette or graduated tube, a standard solution of an acid, that is, a solution prepared by dissolving a known weight of an acid, say hydrochloric acid, in a known volume of water. The acid is run in gradually until the yellow colour changes to pink, at which point the volume of acid used is noted. Knowing the weight of acid contained in this volume of standard acid, and having regard to the law of equivalence mentioned above, it is an easy matter to calculate the amount of alkali equivalent to the acid used, and from this the alkali contained in the sample.

Sulphuric Acid.—The first process for manufacturing sulphuric acid or vitriol was by placing some burning sulphur in a closed vessel containing some water. The water absorbed the acid formed by the burning sulphur. It was next discovered that by mixing with the sulphur some nitre, much more sulphuric acid could be produced per given quantity of brimstone. At first large glass carboys were used, but in 1746 the carboys were replaced by chambers of lead containing water at the bottom, and in these lead chambers the mixture of sulphur and nitre was burnt on iron trays. Next, although gradually, the plant was divided into two portions—a furnace for burning the sulphur, and a chamber for receiving the vapours. The system was thus developed into the one followed at the present time. The sulphur, or, in most cases, cupreous iron pyrites (a combination of iron and copper with sulphur), is burned in specially constructed kilns or furnaces, and the hot gases, consisting essentially of sulphur dioxide with the excess of air, pass through flues in which are placed cast-iron "nitre pots" containing a mixture of nitre (sodium nitrate) and vitriol. The gases thus become mixed with nitrous fumes or gaseous oxides of nitrogen, and, after cooling, are ready for mixing with steam or water spray in the lead chambers in which the vitriol is produced. These oxides of nitrogen enable the formation of sulphuric acid to take place more quickly by playing the part of oxygen-carriers. Sulphuric acid is formed by the union of oxygen with sulphur dioxide and water; the oxides of nitrogen combine with the oxygen of the air present in the chambers, then give up this oxygen to the sulphur dioxide and water or steam to form sulphuric acid, again combine with more oxygen, and so on. The exact processes or reactions are of course much more complicated, but the above represents what is practically the ultimate result. It is evident that the gases leaving the last lead chamber in which the formation of vitriol is effected, must still contain nitrous fumes, and it becomes a matter of importance to recover them, so that they can be used over again. To effect this object, use is made of the solubility of nitrous fumes in strong vitriol. The gases from the last lead chamber of the series are passed through what is called a Gay-Lussac tower (the process was invented by the eminent French chemist Gay-Lussac), which is a tower made of lead, supported by a wooden framework, and filled with coke or special stoneware packing, over which strong vitriol is caused to flow. The vitriol dissolves the nitrogen oxides, and so-called "nitrous vitriol" flows out at the base of the tower. The recovery of the nitrogen compounds from the nitrous vitriol is effected in Glover towers (the invention of John Glover of Newcastle), which also serve to concentrate to some extent the weak acid produced in the lead chambers, and to cool the hot gases from the sulphur burners or pyrites kilns. The weak chamber acid is mixed with the nitrous vitriol from the Gay-Lussac tower, and the mixture is pumped to the top of the Glover tower, which is of similar construction to the Gay-Lussac tower, but is generally packed with flints. This Glover tower is placed between the sulphur burners or pyrites kilns and the first lead chamber. The nitrous vitriol passing down the tower meets the hot gases from the kilns, and a threefold object is effected: (1) The nitrous fumes are expelled from the nitrous vitriol, and are carried into the chambers, to again play the part of oxygen-carriers; (2) the weak chamber acid which was mixed with the nitrous vitriol is concentrated by the hot kiln gases; and (3) the hot gases themselves are cooled. The acid from the Glover tower is purified by special treatment—for example, the arsenic may be removed, after precipitation with sulphuretted hydrogen, in the form of insoluble arsenic sulphide,—and the purified acid is concentrated by heating in glass or platinum vessels.

A considerable amount of sulphuric acid is now made by the so-called "contact process," in which sulphur dioxide and oxygen unite to form sulphuric acid in presence of a heated "contact" substance, usually some form of finely-divided platinum.

Nitric Acid.—This acid is usually prepared by distilling a mixture of sodium nitrate and vitriol in cast-iron retorts or pots, the nitric acid being collected in stoneware vessels connected one with another, or, as is more generally the case at the present time, in condensing apparatus consisting of stoneware pipes or coils cooled by water. The effluent gases are passed through a scrubber in order to free them from the last traces of acid before discharging them into the atmosphere.

Hydrochloric Acid.—The greater part of the hydrochloric acid manufactured in Great Britain is obtained as an intermediate product in the Leblanc alkali process, which will presently be described, being produced by heating common salt with vitriol. A large quantity is, however, also produced by the so-called direct process of Hargreaves & Robinson, which is, in principle, the same method as that employed in the Leblanc process, except that the intermediate product, vitriol, is not separated. It consists essentially in passing the hot gases from pyrites kilns, as used in the manufacture of vitriol, through large cast-iron vessels containing common salt heated to a high temperature. Various physical conditions must be complied with in order to make the process a success. For example, the salt is used in the form of moulded hard porous cakes made from a damp mixture of common salt and rock salt. The cast-iron vessels must be heated uniformly, and the hot pyrites kiln gases must be passed downwards through the salt in order to ensure uniform distribution. The hydrochloric acid is condensed in stoneware pipes connected with towers packed with coke or stoneware.

Alkali: Leblanc Process.—The manufacture of vitriol, as I have described it to you, is the first step in the Leblanc process. The next stage consists in the manufacture of sodium sulphate (salt-cake) and hydrochloric acid from the sulphuric acid and common salt; this is called the salt-cake process. The production of salt-cake or crude sodium sulphate is carried out in two stages. A large covered iron pan, called the decomposing pan or salt-cake pot, is mounted in one part of the salt-cake furnace, and alongside it is the hearth or bed on which the second stage of the process, the drying or roasting, is effected. The mixture of common salt and vitriol is charged into the salt-cake pot, which is heated by a fire below. When from two-thirds to three-quarters of the hydrochloric acid has been expelled from the charge, the mass acquires the consistence of thick dough, and at this stage it is raked out of the pan on to the roasting hearth alongside, where the decomposition is completed by means of flames playing directly on to the top of the charge. The hydrochloric acid evolved during the process is condensed in much the same manner as in the process of Hargreaves & Robinson previously described. It is a curious fact that in the earlier years of the Leblanc process, hydrochloric acid, or "spirits of salt," as it is frequently called, was a by-product that required all the vigilance of the alkali-works inspectors to prevent it being allowed to escape from the chimneys in more than a certain small regulated amount. Now, it is the principal product; indeed, the Leblanc alkali maker may be said to subsist on that hydrochloric acid, as his chief instrument for producing chloride of lime or bleaching powder.

Mechanical furnaces are now used to a large extent for the salt-cake process. They consist broadly of a large revolving furnace-hearth or bed, on to which the mixture of salt and vitriol is charged, and on which it is continuously agitated, and gradually moved to the place of discharge, by rakes or the like, operated by suitable machinery.

The next stage of the Leblanc process is the manufacture of "black ash," or crude sodium carbonate. This is usually done in large cylindrical revolving furnaces, through, which flames from a fire-grate, or from the burning of gaseous fuel, pass; the waste heat is utilised for boiling down "black ash" liquor, obtained by lixiviating the black ash. A mixture of salt-cake, limestone or chalk (calcium carbonate), and powdered coal or coal slack is charged into the revolving cylinder; during the process the mass becomes agglomerated, and the final product is what is known as a "black-ash ball," consisting chiefly of crude sodium carbonate and calcium sulphide, but containing smaller quantities of many other substances. The soda ash or sodium carbonate is obtained from the black ash by lixiviating with water, and after various purification processes, the solution is boiled down, as previously stated, by the waste heat of the black-ash furnace. The alkali is sold in various forms as soda ash, soda crystals, washing soda, etc.

Caustic soda is manufactured from solution of carbonate of soda by causticising, that is, treatment with caustic lime or quicklime.

It will have been noticed that one of the chief reagents in the Leblanc process is the sulphur used in the form of brimstone or as pyrites for making vitriol in the first stage; this sulphur goes through the entire process; from the vitriol it goes to form a constituent of the salt-cake, and afterwards of the calcium sulphide contained in the black ash. This calcium sulphide remains as an insoluble mass when the carbonate of soda is extracted from the black ash, and forms the chief constituent of the alkali waste, which until the year 1880 could be seen in large heaps around chemical works. Now, however, by means of treatment with kiln gases containing carbonic acid, the sulphur is extracted from the waste in the form of hydrogen sulphide, which is burnt to form vitriol, or is used for making pure sulphur; and so what was once waste is now a source of profit.

Ammonia-Soda Process of Alkali Manufacture.—This process depends upon the fact that when carbonic acid is forced, under pressure, into a saturated solution of ammonia and common salt, sodium bicarbonate is precipitated, whilst ammonium chloride or "sal-ammoniac" remains dissolved in the solution. The reaction was discovered in 1836 by a Scotch chemist named John Thom, and small quantities of ammonia-soda were made at that time by the firm of McNaughton & Thom. The successful carrying out of the process on the large scale depends principally upon the complete recovery of the expensive reagent, ammonia, and this problem was only solved within comparatively recent years by Solvay. The process has been perfected and worked with great success in England by Messrs. Brunner, Mond, & Co., and has proved a successful rival to the Leblanc process.

Alkali is also produced to some extent by electrolytic processes, depending upon the splitting up of a solution of common salt into caustic soda and chlorine by the use of an electric current.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page