LECTURE IX DYESTUFFS AND COLOURS

Previous

Classification.—In classifying the different dyestuffs and colouring matters it is, of course, necessary to consider first the properties of those colouring matters generally, and secondly the particular reason for making such classification. The scientific chemist, for example, would classify them according to theoretical considerations, as members of certain typical groups; the representative of medical science or hygiene would naturally classify them as poisonous and non-poisonous bodies; whilst the dyer will as naturally seek to arrange them according to their behaviour when applied to textile fabrics. But this behaviour on applying to textile fibres, if varied in character according to the chemical nature of the colouring matter, as well as the chemical and physical nature of the fabric—and it is so varied—will make such classification, if it is to be thorough-going, not a very simple matter. I may tell you that it is not a simple matter, and, moreover, the best classification and arrangement is that one which depends both on the action of the dyes on the fibres, and also on the intrinsic chemical character of the dyestuffs themselves. Since the higher branches of organic chemistry are involved in the consideration of the structure and dispositions, and consequently more or less of the properties of these dyes, you will readily comprehend that the thorough appreciation and use of that highest and best method of classification, particularly in the case of the coal-tar dyes, will be, more or less, a sealed book except to the student of organic chemistry. But it may be asked, "How does that highest and best method of classifying the dyestuffs affect the users, the dyers, in their processes?" In reply, I would say, "I believe that the dyer who so understands the chemical principles involved in the processes he carries out, and in the best methods of classifying the dyes as chemical substances, so as to be able to act independently of the prescriptions and recipes given him by the dye manufacturers, and so be master of his own position, will, ceteris paribus, be the most economical and successful dyer." Many manufacturers of dyestuffs have said the very same thing to me, but, independently of this, I know it, and can prove it with the greatest ease. Let me now, by means of an experiment or two, prove to you that at least some classification is necessary to begin with. So different and varied are the substances used as colouring matters by the dyer, both as regards their chemical and physical properties, that they even act differently towards the same fibre. I will take four pieces of cotton fabric; three of them are simple white cotton, whilst the fourth cotton piece has had certain metallic salts mixed with thickening substances like gum, printed on it in the form of a pattern, which at present cannot readily be discerned. We will now observe and note the different action on these pieces of cotton—(i.) of a Turmeric bath, (ii.) a Magenta bath, and (iii.) a madder or Alizarin bath. The Turmeric dyes the cotton a fast yellow, the Magenta only stains the cotton crimson, and on washing with water alone, almost every trace of colour is removed again; the madder, however, stains the cotton with no presentable shade of colour at all, produces a brownish-yellow stain, removed at once by a wash in water. But let us take the printed piece of cotton and dye that in the Alizarin bath, and then we shall discover the conditions for producing colours with such a dyestuff as madder or Alizarin. Different coloured stripes are produced, and the colours are conditioned by the kind of metallic salts used. Evidently the way in which, the turmeric dyes the cotton is different from that in which the madder dyes it. The first is a yellow dyestuff, but it would be hard to assign any one shade or tint to Alizarin as a dyestuff. In fact Alizarin (the principle of madder) is of itself not a dye, but it forms with each of several metals a differently coloured compound; and thus the metallic salt in the fabric is actually converted into a coloured compound, and the fabric is dyed or printed. The case is just the same with logwood black dyeing: without the presence of iron ("copperas," etc.), sulphate of copper ("bluestone"), or bichrome, you would get no black at all. We will now try similar experiments with woollen fabrics, taking three simple pieces of flannel, and also two pieces, the one having been first treated with a hot solution of alum and cream of tartar, and the other with copperas or sulphate of iron solution, and then washed. Turmeric dyes the first yellow, like it did the cotton. Magenta, however, permanently dyes the woollen as it did not the cotton. Alizarin only stains the untreated woollen, whilst the piece treated with alumina is dyed red, and that with iron, purple. If, however, the pieces treated with iron and alumina had been dyed in the Magenta solution, only one colour would have been the result, and that a Magenta-red in each case. Here we have, as proved by our experiments, two distinct classes of colouring matters. The one class comprises those which are of themselves the actual colour. The colour is fully developed in them, and to dye a fabric they only require fixing in their unchanged state upon that fabric. Such dyes are termed monogenetic, because they can only generate or yield different shades of but one colour. Indigo is such a dye, and so are Magenta, Aniline Black, Aniline Violet, picric acid, Ultramarine Blue, and so on. Ultramarine is not, it is true, confined to blue; you can get Ultramarine Green, and even rose-coloured Ultramarine; but still, in the hands of the dyer, each shade remains as it came from the colour-maker, and so Ultramarine is a monogenetic colour. Monogenetic means capable of generating one. Turning to the other class, which comprises, as we have shown, Alizarin, and, besides, the colouring principle of logwood (HÆmatein), Gallein, and Cochineal, etc., we have bodies usually possessed of some colour, it is true, but such colour is of no consequence, and, indeed, is of no use to dyers. These bodies require a special treatment to bring out or develop the colours, for there may be several that each is capable of yielding. We may consider them as colour-giving principles, and so we term them polygenetic colours. Polygenetic means capable of generating several or many. In the various colours and dyes we have all phases, and the monogenetic shades almost imperceptibly into the polygenetic. The mode of application of the two classes of colours is, of course, in each case quite essentially different, for in the case of the monogenetic class the idea is mainly either to dye at once and directly upon, the unprepared fibre, or having subjected the fabric to a previous preparation with a metallic or other solution, to fix directly the one colour on that fabric, on which, without such preparation, it would be loose. In the case of the polygenetic class, the idea is necessarily twofold. The dyeing materials are not colours, only colour generators. Hence in all cases the fabric must be prepared with the twofold purpose—first, of using a metallic or other agent, capable of yielding, with the dye material, the desired colour; and secondly, of yielding it on the fibre in an insoluble and permanent form. Now, though I have gone so far into this mode of classification, because it does afford some information and light, yet I can go no farther without getting into a territory that presupposes a knowledge and acquaintance with the chemical structure of the colouring matters as organic substances, which would be, at present, beyond us. I shall now turn to another mode of classification, which, if not so far-reaching as the other, is at least an exceedingly useful one. The two methods may be combined to a considerable extent. By the latter plan the colours may be conveniently divided into three groups: I., substantive colours; II., adjective colours; III., mineral and pigment colours.

Substantive Dyestuffs.—The substantive colours fix themselves readily and directly on animal fibres and substances, but only a few amongst them will dye vegetable fibres like cotton and linen directly. Almost all substantive colours may, however, be fixed on cotton and linen by first preparing or mordanting those vegetable fibres. Silk, wool, fur, etc., act like fibre and mordant together, for they absorb and fix the substantive colours firmly. In our experiments we saw that turmeric is one of the few substantive colours fixing itself on both cotton and wool, without any aid from a mordant or fixing agent. Magenta was also a substantive colour, but Alizarin was certainly not one of this class.

Adjective Dyestuffs.—Some of these substances are definitely coloured bodies, but in some of them the colour is of no consequence or value, and is quite different and distinct from the colour eventually formed on the fibre, which colour only appears in conjunction with a special mordant; but, again, some of them are not coloured, and would not colour the fibre directly at all, only in conjunction with some mordant. All the polygenetic colours are, of course, comprised in this class, for example Alizarin and logwood (HÆmatein), whilst such monogenetic colours as annatto and turmeric are substantive, for they will fix themselves without a mordant on cotton and wool. The adjective colours can be conveniently subdivided into—(a) those existing in nature, as logwood (HÆmatein) and Cochineal; (b) those artificially formed from coal-tar products, as Alizarin (madder), Gallein, etc.

Mineral and Pigment Dyestuffs.—These colours are insoluble in water and alcohol. They are either fixed on the fibre by mechanical means or by precipitation. For example, you use blacklead or plumbago to colour or darken your hats, and you work on this pigment colour by mechanical means. I will show you by experiment how to fix a coloured insoluble pigment in the fibre. I take a solution of acetate of lead (sugar of lead), and to it I add some solution of bichrome (potassium bichromate). Acetate of lead (soluble in water) with bichromate of potash (also soluble in water) yields, on mixing the two, acetate of potash (soluble in water), and chromate of lead, or chrome yellow (insoluble in water), and which is consequently precipitated or deposited. Now suppose I boil some of that chrome-yellow precipitate with lime-water, I convert that chrome yellow into chrome orange. This, you see, takes place without any reference to textile fibres. I will now work a piece of cotton in a lead solution, so that the little tubes of the cotton fibre shall be filled with it just as the larger glass tube or vessel was filled in the first experiment. I next squeeze and wash the piece, so as to remove extraneous solution of lead, just as if I had filled my glass tube by roughly dipping it bodily into the lead solution, and then washed and cleansed the outside of that tube. Then I place the fabric in a warm solution of bichromate of potash (bichrome), when it becomes dyed a chrome yellow, for just as chromate of lead is precipitated in the glass tube, so it is now precipitated in the little tubes of the cotton fibre (see Lecture I.). Let us see if we can now change our chrome yellow to chrome orange, just as we did in the glass vessel by boiling in lime-water. I place the yellow fabric in boiling lime-water, when it is coloured or dyed orange. In each little tubular cotton fibre the same change goes on as went on in the glass vessel, and as the tube or glass vessel looks orange, so does the fabric, because the cotton fibres or tubes are filled with the orange chromium compound. You see this is quite a different process of pigment colouring from that of rubbing or working a colour mechanically on to the fibre.

Let us now turn to the substantive colours (Group I.), and see if we can further sub-divide this large group for the sake of convenience. We can divide the group into two—(a) such colours as exist ready formed in nature, and chiefly occur in plants, of which the following are the most important: indigo, archil or orchil, safflower, turmeric, and annatto; (b) the very large sub-group of the artificial or coal-tar colours. We will briefly consider now the dyestuffs mentioned in Group (a).

Natural Substantive Colours.—Indigo, one of the most valuable dyes, is the product of a large number of plants, the most important being different species of indigofera, which belong to the pea family. None of the plants (of which indigofera tinctoria is the chief) contain the colouring matter in the free state, ready-made, so to say, but only as a peculiar colourless compound called indican, first discovered by Edward Schunck. When this body is treated with dilute mineral acids it splits up into Indigo Blue and a kind of sugar. But so easily is this change brought about that if the leaf of the plant be only bruised, the decomposition ensues, and a blue mark is produced through separation of the Indigo Blue. The possibility of dyeing with Indigo so readily and easily is due to the fact that Indigo Blue absorbs hydrogen from bodies that will yield it, and becomes, as we say, reduced to a body without colour, called Indigo White, a body richer in hydrogen than Indigo Blue, and a body that is soluble. If this white body (Indigo White) be exposed to the air, the oxygen of the air undoes what the hydrogen did, and oxidises that Indigo White to insoluble Indigo Blue. Textile fabrics dipped in such reduced indigo solutions, and afterwards exposed to the air, become blue through deposit in the fibres of the insoluble Indigo Blue, and are so dyed. This is called the indigo-vat method. We can reduce this indigo so as to prepare the indigo-vat by simply mixing Indigo Blue, copperas (ferrous sulphate) solution, and milk of lime in a closely-stoppered bottle with water, and letting the mixture stand. The clear liquor only is used. A piece of cotton dipped in it, and exposed to the air, quickly turns blue by absorbing oxygen, and is thus dyed. The best proportions for the indigo-vat are, for cloth dyeing, 4000 parts of water, 40 of indigo, 60 to 80 of copperas crystals, and 50 to 100 of dry slaked lime. The usual plan is to put in the water first, then add the indigo and copperas, which should be dissolved first, and finally to add the milk of lime, stirring all the time. Artificial indigo has been made from coal-tar products. The raw material is a coal-tar naphtha called toluene or toluol, which is also the raw material for saccharin, a sweetening agent made from coal-tar. This artificial indigo is proving a formidable rival to the natural product.

Orchil paste, orchil extract, and cudbear are obtained by exposing the plants (species of lichens) containing the colouring principle, called Orcin, itself a colourless substance, to the joint action of ammonia and air, when the oxygen of the air changes that orcin by oxidising it into OrcÈin, which is the true red colouring matter contained in the preparations named. The lichens thus treated acquire gradually a deep purple colour, and form the products called "cudbear." This dye works best in a neutral bath, but it will do what not many dyes will, namely, dye in either a slightly alkaline or slightly acid bath as well. Orchil is not applicable in cotton dyeing. Being a substantive colour no mordants are needed in dyeing silk and wool with it. The colour produced on wool and silk is a bright magenta-red with bluish shade.

Litmus is also obtained from the same lichens as yield orchil. It is not used in dyeing, and is a violet-blue colouring matter when neither acid nor alkaline, but neutral as it is termed. It turns red with only a trace of acid, and blue with the least trace of alkali, and so forms a very delicate reagent when pieces of paper are soaked with it, and dipped into the liquids to be tested.

Safflower: This vegetable dyeing material, for producing pink colours on cotton without the aid of a mordant, consists of the petals of the flower of carthamus tinctorius. It contains a principle termed "Carthamin" or "carthamic acid," which can be separated by exhausting safflower with cold acidulated water (sulphuric acid) to dissolve out a yellow colouring matter which is useless. The residue after washing free from acid is treated with a dilute solution of soda crystals, and the liquid is then precipitated by an acid. A red precipitate is obtained, which fixes itself directly on cotton thread immersed in the liquid, and dyes it a delicate rose pink, which is, unfortunately, very fugitive. Silk can be dyed like cotton. The colour is not fast against light.

Turmeric is the root portion of a plant called curcuma tinctoria, that grows in Southern Asia. The principle forming the colouring matter is "Curcumin." It is insoluble in cold water, not much soluble in hot, but easily soluble in alcohol. From the latter solution it separates in brilliant yellow crystals. Although the colour it yields is very fugitive, the wool and silk dyers still use it for producing especially olives, browns, and similar compound shades. It produces on cotton and wool a bright yellow colour without the aid of any mordant. To show you how easily dyeing with turmeric is effected, I will warm some powdered turmeric root in a flask with alcohol, and add the extract to a vessel of water warmed to about 140° F. (60° C.), and then dip a piece of cotton in and stir it about, when it will soon be permanently dyed a fine bright yellow. A piece of wool similarly worked in the bath is also dyed. However, the unfortunate circumstance is that this colour is fast neither to light nor alkalis. Contact with soap and water, even, turns the yellow-dyed cotton, reddish-brown.

Annatto is a colouring principle obtained from the pulpy matter enclosing the seeds of the fruit of a tree, the Bixa orellana, growing in Central and Southern America. The red or orange colour it yields is fugitive, and so its use is limited, being chiefly confined to silk dyeing. The yellow compound it contains is called "Orellin," and it also contains an orange compound called "Bixin," which is insoluble in water, but readily soluble in alkalis and in alcohol with a deep yellow colour. To dye cotton with it, a solution is made of the colour in a boiling solution of carbonate of soda. The cotton is worked in the diluted alkaline solution whilst hot. By passing the dyed cotton through water acidulated with a little vitriol or alum, a redder tint is assumed. For wool and silk, pale shades are dyed at 106° F. (50° C.) with the addition of soap to the bath, dark shades at 200° to 212° F. (80° to 100° C.).


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page