CHAPTER VIII

IT is one of our earliest experiences that different substances of the same size have often markedly different weights; thus, there is a great difference between wood and iron, and still greater between wood and lead. It is usual to say that iron is heavier than wood, but the statement is misleading, because it would be possible by selecting a large enough piece of wood to find one at least as heavy as a particular piece of iron. We have, in fact, to compare equal volumes of the two substances, and all ambiguity is removed if we speak of relative density or specific gravity—the former term being usually applied to liquids and the latter to solids—instead of weight or heaviness. The density of water at 4° C. is taken as unity, that being the temperature at which it is highest; at other temperatures it is somewhat lower, as will be seen from Table IX given at the end of the book. The direct determination of the volume of an irregular solid presents almost insuperable difficulty; but, fortunately, for finding the specific gravity it is quite unnecessary to know the volume, as will be shown when we proceed to consider the methods in use.

The specific gravity of a stone is a character which is within narrow limits constant for each species, and is therefore very useful for discriminative purposes. It can be determined whatever be the shape of the stone, and it is immaterial whether it be transparent or not; but, on the other hand, the stone must be unmounted and free from the setting.

The methods for the determination of the specific gravity are of two kinds: in the first a liquid is found of the same, or nearly the same, density as the stone, and in the second weighings are made and the use of an accurate balance is required.

(1) Heavy Liquids

Experiment tells us that a solid substance floats in a liquid denser than itself, sinks in one less dense, and remains suspended at any level in one of precisely the same density. If the stone be only slightly less dense than the liquid, it will rise to the surface; if it be just as slightly denser, it will as surely sink to the bottom, a physical fact which has added so much to the difficulty and danger of submarine manoeuvring. If then we can find a liquid denser than the stone to be tested, and place the latter in it, the stone will float on the surface. If we take a liquid which is less dense than the stone and capable of mixing with the heavier liquid, and add it to the latter, drop by drop, gently stirring so as to assure that the density of the combination is uniformly the same throughout, a stage is finally reached when the stone begins to move downwards. It has now very nearly the density of the liquid, and, if we find by some means this density, we know simultaneously the specific gravity of the stone.

Various devices and methods are available for ascertaining the density of liquids—for instance, Westphal’s balance; but, apart from the inconvenience attending such a determination, the density of all liquids is somewhat seriously affected by changes in the temperature, and it is therefore better to make direct comparison with fragments of substances of known specific gravity, which are termed indicators. If of two fragments differing slightly in specific gravity one floats on the surface of a uniform column of liquid and the other lies at the bottom of the tube containing the liquid, we may be certain that the density of the liquid is intermediate between the two specific gravities. Such a precaution is necessary because, if the liquid be a mixture of two distinct liquids, the density would tend to increase owing to the greater volatility of the lighter of them, and in any case the density is affected by change of temperature. The specific gravity of stones is not much altered by variation in the temperature.

A more convenient variation of this method is to form a diffusion column, so that the density increases progressively with the depth. If the stone under test floats at a certain level in such a column intermediate between two fragments of known specific gravity, its specific gravity may be found by elementary interpolation. To form a column of this kind the lighter liquid should be poured on to the top of the heavier. Natural diffusion gives the most perfect column, but, being a lengthy process, it may conveniently be quickened by gently shaking the tube, and the column thus formed gives results sufficiently accurate for discriminative purposes.

By far the most convenient liquid for ordinary use is methylene iodide, which has already been recommended for its high refraction. It has, when pure, a density at ordinary room-temperatures of 3·324, and it is miscible in all proportions with benzol, whose density is O·88, or toluol, another hydrocarbon which is somewhat less volatile than benzol, and whose density is about the same, namely, 0·86. When fresh, methylene iodide has only a slight tinge of yellow, but it rapidly darkens on exposure to light owing to the liberation of iodine which is in a colloidal form and cannot be removed by filtration. The liquid may, however, be easily cleared by shaking it up with any substance with which the iodine combines to form an iodide removable by filtration. Copper filings answer the purpose well, though rather slow in action; mercury may also be used, but is not very satisfactory, because a small amount may be dissolved and afterwards be precipitated on to the stone under test, carrying it down to the bottom of the tube. Caustic potash (potassium hydroxide) is also recommended; in this case the operation should preferably be carried out in a special apparatus which permits the clear liquid to be drawn off underneath, because water separates out and floats on the surface. In Fig. 32 three cut stones, a quartz (a), a beryl (b), and a tourmaline (c) are shown floating in a diffusion column of methylene iodide and benzol. Although the beryl is only slightly denser than the quartz, it floats at a perceptibly lower level. These three species are occasionally found as yellow stones of very similar tint.

Fig. 32.—Stones of different
Specific Gravities floating
in a Diffusion Column of
heavy Liquid.

Various other liquids have been used or proposed for the same purpose, of which two may be mentioned. The first of them is a saturated solution of potassium iodide and mercuric iodide in water, which is known after the discoverer as Sonstadt’s solution. It is a clear mobile liquid with an amber colour, having at 12° C. a density of 3·085; it may be mixed with water to any extent, and is easily concentrated by heating; moreover, it is durable and not subject to alteration of any kind; on the other hand, it is highly poisonous and cauterizes the skin, not being checked by albumen; it also destroys brass-ware by amalgamating the metal. The second is Klein’s solution, a clear yellow liquid which has at 15° C. a density of 3·28. It consists of the boro-tungstate of cadmium, of which the formula is 9WO3.B2O3.2CdO.2H2O + 16Aq, dissolved in water, with which it may be diluted. If the salt be heated, it fuses at 75° C. in its own water of crystallization to a yellow liquid, very mobile, with a density of 3·55. Klein’s solution is harmless, but it cannot compare for convenience of manipulation with methylene iodide.

The most convenient procedure is to have at hand three glass tubes, fitted with stoppers or corks, to contain liquids of different densities—

(a) Methylene iodide reduced to 2·7; using as indicators orthoclase 2·55, quartz 2·66, and beryl 2·74.

(b) Methylene iodide reduced to 3·1; indicators, beryl 2·74 and tourmaline 3·10.

(c) Methylene iodide, undiluted, 3·32.

The pure liquid in the last tube should on no account be diluted; but the density of the other two liquids may be varied slightly, either by adding benzol in order to lower it, or by allowing benzol, which has far greater volatility than methylene iodide, to evaporate, or by adding methylene iodide, in order to increase it. The density of the liquids may be ascertained approximately from the indicators.

A glance at the table of specific gravities shows that as regards the gem-stones methylene iodide is restricted in its application, since it can be used to test only moonstone, quartz, beryl, tourmaline, and spodumene; opal and turquoise, being amorphous and more or less porous, should not be immersed in liquids, lest the appearance of the stone be irretrievably injured. Methylene iodide readily serves to distinguish the yellow quartz from the true topaz, with which jewellers often confuse it, the latter stone sinking in the liquid; again aquamarine floats, but the blue topaz, which is often very similar to it, sinks in methylene iodide.

By saturating methylene iodide with iodine and iodoform, we have a liquid (d) of density 3·6; a fragment of topaz, 3·55, may be used to indicate whether the liquid has the requisite density. Unfortunately this saturated solution is so dark as to be almost opaque, and is, moreover, very viscous. Its principal use is to distinguish diamond, 3·535, from the brilliant colourless zircon, with which, apart from a test for hardness, it may easily be confused. It is easy to see whether the stone floats, as it would do if a diamond. To recover a stone which has sunk, the only course is to pour off the liquid into another tube, because it is far too dark for the position of the stone to be seen.

It is possible to employ a similar method for still denser stones by having recourse to Retgers’s salt, silver-thallium nitrate. This double salt is solid at ordinary room-temperatures, but has the remarkable property of melting at a temperature, 75° C., which is well below the point of fusion of either of its constituents, to a clear, mobile yellow liquid, which is miscible in any proportion with water, and has, when pure, a density of 4·6. The salt may be purchased, or it may be prepared by mixing 100 grams of thallium nitrate and 64 grams of silver nitrate, or similar proportions, in a little water, and heating the whole over a water-bath, keeping it constantly stirred with a glass rod until it is liquefied. The two salts must be mixed in the correct proportions, because otherwise the mixture might form other double salts, which do not melt at so low a temperature. A glance at the table of specific gravities shows that Retgers’s salt may be used for all the gem-stones with the single exception of zircon (b). There are, however, some objections to its use. It is expensive, and, unless kept constantly melted, it is not immediately available. It darkens on exposure to strong sunlight like all silver salts, stains the skin a peculiar shade of purple which is with difficulty removed, and in fact only by abrasion of the skin, and, like all thallium compounds, is highly poisonous.

It is convenient to have three tubes, fitted as before with stoppers or corks, to contain the following liquids, when heated:—

(e) Silver-thallium nitrate, reduced to 3·5; using as indicators, peridot or idocrase 3·40 and topaz 3·53.

(f) Silver-thallium nitrate, reduced to 4·0; indicators, topaz 3·53 and sapphire 4·03.

(g) Silver-thallium nitrate, undiluted, 4·6.

The tubes must be heated in some form of water-bath; an ordinary glass beaker serves the purpose satisfactorily. The pure salt should never be diluted; but the density of the contents of tubes (e) and (f) may be varied at will, water being added in order to lower the density, and concentration by means of evaporation or addition of the nitrate being employed in order to increase it. To avoid the discoloration of the skin, rubber finger-stalls may be used, and the stones should not be handled until after they have been washed in warm water. The staining may be minimized if the hands be well washed in hot water before being exposed to sunlight. It is advisable to warm the stone to be tested in a tube containing water beforehand lest the sudden heating develop cracks. A piece of platinum, or, failing that, copper wire is of service for removing stones from the tubes; a glass rod, spoon-shaped at one end, does equally well. It must be noted that although Retgers’s salt is absolutely harmless to the ordinary gem-stones—with the exception of opal and turquoise, which, as has already been stated, being to some extent porous, should not be immersed in liquids—it attacks certain substances, for instance, sulphides and cannot be applied indiscriminately to minerals.

The procedure described above is intended only as a suggestion; the method may be varied to any extent at will, depending upon the particular requirements. If such tests are made only occasionally, a smaller number of tubes may be used. Thus one tube may be substituted for the two marked a and b, the liquid contained in it being diluted as required, and a series of indicators may be kept apart in small glass tubes. On the other hand, any one having constantly to test stones might increase the number of tubes with advantage, and might find it useful to have at hand fragments of all the principal species in order to make direct comparison.

(2) Direct Weighing

The balance which is necessary in both the methods described under this head should be capable of giving results accurate to milligrams, i.e. the thousandth part of a gram, and consistent with that restriction the beam may be as short as possible so as to give rapid swings and thus shorten the time taken in the observations. A good assay balance answers the purpose admirably. Of course, it is never necessary to wait till the balance has come to rest. The mean of the extreme readings of the pointer attached to the beam will give the position in which it would ultimately come to rest. Thus, if the pointer just touches the eighth division on the right-hand side and the second on the other, the mean position is the third division on the right-hand side (½(8 - 2) = 3). Instead of the ordinary form of chemical balance, Westphal’s form or Joly’s spring-balance may be employed. Weighings are made more quickly, but are not so accurate.

In refined physical work the practice known as double-weighing is employed to obviate any slight error there may be in the suspension of the balance. A counterpoise which is heavier than anything to be weighed is placed in one pan, and weighed. The counterpoise is retained in its pan throughout the whole course of the weighings. Any substance whose weight is to be found is placed in the other pan, and weights added till the balance swings truly again. The difference between the two sets of weights evidently gives the weight of the substance. Balances, however, are so accurately constructed that for testing purposes such refined precautions are not really necessary.

It is immaterial in what notation the weighings are made, so long as the same is used throughout, but the metric system of weights, which is in universal use in scientific work, should preferably be employed. Jewellers, however, use carat weights, and a subdivision to the base 2 instead of decimals, the fractions being ½, ¼, ?, 1/16, 1/32, 1/64. If these weights be employed, it will be necessary to convert these fractions into decimals, and write ½ = ·500, ¼ ·250, ? = ·125, 1/16 = ·062, 1/32 = ·031, 1/64 = ·016.

(a) Hydrostatic Weighing

The principle of this method is very simple. The stone, the specific gravity of which is required, is first weighed in air and then when immersed in water. If W and be these weights respectively, then W - is evidently the weight of the water displaced by the stone and having therefore the same volume as it, and the specific gravity is therefore equal to W/W - Wr.

If the method of double-weighing had been adopted, the formula would be slightly altered. Thus, suppose that c corresponds to the counterpoise, w and to the stone weighed in air and water respectively; then we have W = c - w and = c - , and therefore the specific gravity is equal to c - w/ - w.

Fig. 33.—Hydrostatic Balance.

Some precautions are necessary in practice to assure an accurate result. A balance intended for specific gravity work is provided with an auxiliary pan (Fig. 33), which hangs high enough up to permit of the stone being suspended underneath. The weight of anything used for the suspension must, of course, be determined and subtracted from the weight found for the stone, both when in air and when in water. A piece of fine silk is generally used for suspending the stone in water, but it should be avoided, because the water tends to creep up it and the error thus introduced affects the first place of decimals in the case of a one-carat stone, the value being too high. A piece of brass wire shaped into a cage is much to be preferred. If the same cage be habitually used, its weight in air and when immersed in water to the customary extent in such determinations should be found once for all.

Care must also be taken to remove all air-bubbles which cling to the stone or the cage; their presence would tend to make the value too low. The surface tension of water which makes it cling to the wire prevents the balance swinging freely, and renders it difficult to obtain a weighing correct to a milligram when the wire dips into water. This difficulty may be overcome by substituting a liquid such as toluol, which has a much smaller surface tension.

As has been stated above, the density of water at 4° C. is taken as unity, and it is therefore necessary to multiply the values obtained by the density of the liquid, whatever it be, at the temperature of the observation. In Table IX, at the end of the book, are given the densities of water and toluol at ordinary room-temperatures. It will be noticed that a correct reading of the temperature is far more important in the case of toluol.

Example of a Hydrostatic Determination of Specific Gravity—
Weight of stone in air = 1·471 gram
Weight of stone in water = 1·067 „
Specific gravity = 1·471/1·471 - 1·067 = 1·471/0·404.

Allowing for the density of water at the temperature of the room, which was 16° C., the specific gravity is 3·637. Had no such allowance been made, the result would have been four units too high in the third place of decimals. For discriminative purposes, however, such refinement is unnecessary.

(b) Pycnometer, or Specific Gravity Bottle

The specific gravity bottle is merely one with a fairly long neck on which a horizontal mark has been scratched, and which is closed by a ground glass stopper. The pycnometer is a refined variety of the specific gravity bottle. It has two openings: the larger is intended for the insertion of the stone and the water, and is closed by a stopper through which a thermometer passes, while the other, which is exceedingly narrow, is closed by a stopper fitting on the outside, and is graduated to facilitate the determination of the height of the water in it.

The stone is weighed as in the previous method. The bottle is then weighed, and filled with water up to the mark and weighed again. The stone is now introduced into the bottle, and the surplus water removed with blotting-paper or otherwise until it is at the same level as before, and the bottle with its contents is weighed. Let W be the weight of the stone, w the weight of the bottle, the weight of the bottle and the water contained in it, and W the weight of the bottle when containing the stone and the water. Then - w is the weight of the water filling the bottle up to the mark, and W - w - W is the reduced weight of water after the stone has been inserted; the difference, W + - W, is the weight of the water displaced. The specific gravity is therefore W/W + - W. As in the previous method, this value must be multiplied by the density of the liquid at the temperature of the experiment. If the method of double-weighing be adopted, the formula will be slightly modified.


Of the above methods, that of heavy liquids, as it is usually termed, is by far the quickest and the most convenient for stones of ordinary size, the specific gravity of which is less than the density of pure methylene iodide, namely, 3·324, and by its aid a value may be obtained which is accurate to the second place of decimals, a result quite sufficient for a discriminative test. The method is applicable no matter how small the stone may be, and, indeed, for very small stones it is the only trustworthy method; for large stones it is inconvenient, not only because of the large quantity of liquid required, but also on account of the difficulty in estimating with sufficient certainty the position of the centre of gravity of the stone. A negative determination may be of value, especially if attention be paid to the rate at which the stone falls through the liquid; the denser the stone the faster it will sink, but the rate depends also upon the shape of the stone. Retgers’s salt is less convenient because of the delay involved in warming it and of the almost inevitable staining of the hands, but its use presents no difficulty whatever.

Hydrostatic weighing is always available, unless the stone be very small, but the necessary weighings occupy considerable time, and care must be taken that no error creeps into the computation, simple though it be. Even if everything is at hand, a determination is scarcely possible under a quarter of an hour.

The third method, which takes even longer, is intended primarily for powdered substances, and is not recommended for cut stones, unless there happen to be a number of tiny ones which are known to be exactly of the same kind.

The specific gravities of the gem-stones are given in Table VII at the end of the book.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page