To enable the parts of a motor to work well, there must be freedom of motion between all that move in contact with each other. This necessary freedom of motion is provided for to a certain extent by proper lubrication, but this is not all-sufficient. The necessity for some additional friction- and heat-reducing system can be better realized when it is understood that the temperature of the explosion in the cylinders of a gasoline engine is well over 2,600 degrees, Fahrenheit. The melting point of pure iron is less than 2,800 degrees. Therefore were there no escape for this heat, and could the motor be induced to run under these severe conditions, the cylinders would soon reach a temperature dangerously near the melting point. Long before this point could be reached, however, the intense heat would have expanded the pistons so that they would become stuck in their cylinders, and no more explosions could occur. An A large amount of the heat resulting from each explosion is carried out through the exhaust pipe in the form of the burned gases, while other portions radiate into the surrounding air. These outlets are not sufficient, however, to carry away all the heat that is necessary to enable the motor to run efficiently, for proper piston lubrication is exceedingly difficult to obtain at high temperatures. There must, therefore, be more positive and direct means for carrying off this undesired heat, and to accomplish this result every internal combustion motor is provided with a cooling system of either the air or liquid (usually water) type. Motorcycle power plants and a few of Let us consider first the air-cooled system. The area presented by the outside of a smooth cylinder is not large enough to enable sufficient radiation to take place. That is, the heat is concentrated on a comparatively small surface, and this is much more difficult to keep cool than is the same amount of heat distributed over a greater area—for the cylinder will be exposed to a larger quantity of fresh air in the latter case. Therefore many air-cooled engines are provided with a series of grooves and flanges on the outer surface of the cylinder. The heat is conducted to all parts of this surface—flanges as well as grooves—and the area of the surface that is exposed to the cooling air is greatly increased thereby. These grooves and flanges may extend circumferentially around the cylinder, as is the case with many motorcycle engines, or they may extend longitudinally. Another form of air-cooling system consists of pins or spines projecting radially from the surface of the cylinder. The motion of the car through the One of the most effective air-cooling systems for use on an automobile motor consists of the above-mentioned longitudinal flanges and grooves enclosed in a thin jacket or casing surrounding each cylinder. These jackets are open at the top and bottom of the cylinders, and connect with large pipes, or troughs, through which air is forced. The trough into which the top of the jacket spaces open is connected with the discharge end of a large fan. The air is thus driven into the top trough, through each jacket, and into the lower trough, the farther termination of which is connected Inasmuch as the heat from an air-cooled motor is radiated directly into the current of air itself, the surface is very susceptible to temperature changes from the interior. Thus, if the car is run for a great distance on the low gear, and the cylinders become hot in consequence, a larger amount of heat will immediately be radiated from the cooling surfaces than is the case when the motor is running slowly. A "coast" down a short hill, however, will serve to cool the motor rapidly, for if the engine is run from the momentum of the car with the spark turned off, cool air will be drawn into the cylinders, and this, in addition to the circulation of cold air on the outside, will reduce the temperature of the engine rapidly. This is a feature of the operation It is, perhaps, hardly accurate to apply the term "water-cooled" to the ordinary type of automobile motor. Water is merely the medium that transfers the heat from the cylinders to the cooling surface of the radiator. As air is used to cool this heated water, we see that the only difference between the two systems lies in the point of application of the actual heat-absorbing medium—which is air in both cases. Thus in the air-cooled motor the air is carried directly to the surfaces to be cooled; while in the other type, the heat is transferred by means of the water to the point where it may be effectually discharged into the air. Each cylinder of a water-cooled motor is surrounded by a space known as the water jacket. This space is generally cast with the cylinder, although in some designs of motors the jackets are formed by the subsequent application of a copper casing that serves to retain the water. The water jackets are connected with each other by means of piping and water-tight joints so that the water will pass successively from one to the other. If the This radiator is a large, perforated structure placed either forward of the motor to form the end of the bonnet-covering, or in front of the dash between it and the rear cylinder of the engine. The radiator is a mass of small cellular or tubular passages, each one of which possesses an exceedingly large outer surface in proportion to the amount of water that it can contain. When the hot water reaches the radiator it is distributed to these many cells or tubes, and is thus spread over a large cooling surface. A large fan is usually located directly behind the radiator, and as this serves to draw the air rapidly through the openings between the cells or tubes, cooling is greatly facilitated. There are several types of radiators in general use. Some consist of a number of flat cells placed in such a manner that regular-shaped air openings will be formed. Each side of each The reason for this circulation of the water will be apparent if we call to mind a bit of our elementary physics. When water is heated, it expands and rises, and for this reason, we always find the surface of the water in a teakettle warmer than is that at the bottom—although the latter is closer to the fire. As the water is circulated through the radiator, it is cooled by the passage of the large amount of air through the openings between the cells or tubes. The water thus cooled sinks to the bottom of the radiator and is replaced by the There are two methods of circulating the water through the cylinder jackets and radiator. The most common method consists of the introduction of a pump in the lower portion of the circulating system. In the case of automobile motors, this pump is driven by gears connected with the crank shaft of the engine. Such a pump will be either of the gear or centrifugal type, and will suck the cooled water from the lower portion of the radiator, and force it through the jackets. The second method is known as the thermo-syphon system because the circulation is automatic and depends upon the cooling of the water in the radiator. When the cooled water sinks, a syphon action is formed that tends to draw the hot water from the cylinder jackets, and the automatic circulation will thus continue as long as the successive heating and cooling take place. Inasmuch as the pump is driven by the crank shaft of the engine, its speed will be proportional to that of the motor. The same holds true of the fan that serves to draw the The ability of the radiator to carry off the heat from the water depends upon the rapidity with which the air passes through the passages provided for the purpose. The amount of air passing through is determined by the speed of Water under atmospheric pressure cannot be brought to a temperature above 212 degrees Fahrenheit without being converted into steam. Therefore, when the heat from a water-cooled motor cannot be carried away sufficiently fast, the water in the circulating system will begin to boil. As long as water remains in the jackets, the temperature of these spaces cannot well rise above 212 degrees, and consequently there is small danger that a But even when the cooling water is not brought to the boiling point there is a vapor that is constantly dispelled from it whenever its temperature is brought above that of the air. The water system of an automobile must therefore be replenished at irregular intervals, depending upon the amount and nature of the running to which the car has been subjected. The older cars were provided with an extra water tank, generally located under the seat, and connected directly with the water jackets and the radiator. The usual water-cooling system of the present-day car, however, is self-contained—that is, there is no separate tank for the storage of the water. The water is poured into the top of the radiator, and from this high point it reaches every part of the circulating It has been stated in a preceding paragraph that continued running on the low gear is the most frequent cause of overheating a motor. This is true, but it is not the only cause. Obstructions in the circulating system that reduce Water is a liquid that remains in its fluid Aside from keeping the car in a warm place whenever the motor is to be at rest more than two hours, there is only one method of preventing the cooling water from freezing, and that One of the most common liquids used in the cooling water to prevent freezing is alcohol. If equal parts of wood alcohol and water are used in the cooling system, the resulting mixture will not freeze until it reaches a temperature colder than 25 degrees below zero. A weaker mixture—one having 25 per cent. of wood alcohol—will freeze at about zero, and it therefore depends upon the prevailing cold-weather temperature as to the proper proportion that should be used. It must be remembered that the boiling point of alcohol is much lower than is that of water, and that therefore a mixture that will not freeze in exceedingly cold weather is liable to boil away on the first moderate day on which the car is run. The above-mentioned 50 per cent. mixture of wood alcohol and water will boil at 135 degrees, while the 25 per cent. solution will withstand a temperature 40 degrees higher before it is Glycerine is another substance that is often mixed with the cooling water to prevent the latter from freezing. A 50 per cent. mixture of this and water has a freezing point of about zero, or slightly lower, and boils at practically the same temperature as water—210 degrees. Combinations of wood alcohol and glycerine may be used—equal parts of each being the usual proportion—and thus various freezing and boiling points may be obtained. The radiator is one of the most delicate parts of the motor car's construction, and yet it is the most exposed to flying sticks and stones that may be thrown up by the rapid travel of the car. The car owner may do well to follow the practice of many racing drivers who place |