A lubricant acts as a sort of pacifier between two surfaces that would otherwise move in contact with each other. No surface can move in direct contact with another of the same or a different material without the generation of heat; but the amount of heat generated, or resistance met with, is determined by the nature of these two rubbing surfaces. The oil, or grease, or whatever suave, slippery substance is to be used as a lubricant, interposes itself in a thin film between the two rubbing surfaces and smooths matters over, as it were. If a sufficient amount of this mechanical soothing syrup is not fed to the rubbing surfaces, the temper and temperature of each will be raised to the point where they will "clinch," and much time and effort may be required before harmony can again be restored. Thus it is actually upon a film of lubricant that a shaft rests, rather than upon the bearing, The "coefficient of friction" may be termed the mechanical "amount of irritability" generated when two surfaces are rubbed together. Thus if two metals are rubbed together, this figure is high, and a large amount of friction, or heat, will be generated. A metal rubbing over oil, however—as is the case with a well-lubricated bearing—will arouse but little resentment and its pathway will be made smooth and easy, for the coefficient of friction of these two materials is low. The lower this figure can be kept, the more easily can the surfaces be rubbed over each other and the higher will be the efficiency of the bearing. Apply this to every bearing or rubbing surface of a motor, and we see that proper lubrication affects not only the length of life of the moving parts, but the ease with which the engine can be run and the consequent power development. But the introduction of oil to a bearing not only reduces the friction between the surfaces that would otherwise move in contact with each other, but it serves another very important purpose. Every properly-lubricated portion of a motor either moves in a bath of oil or is connected with an oil reservoir so that a certain amount will be fed regularly to the rubbing surfaces. There is always some heat generated in a bearing, no matter how well it may be lubricated, and the continuous flow or circulation of the oil serves to carry off this heat that would otherwise tend to dry the lubricant if there were no fresh supply. The proper lubrication of the motor is even more necessary than is the adjustment of the carburetor or the condition of the ignition system. To be sure, if either the carburetor or Let us see how many parts of the motor are reached by the gallon or so of oil that we pour into the tank. A six-cylinder motor may have seven crank shaft bearings; it will certainly possess six connecting rods, each of which will be provided with a bearing at both its large and small ends—or twelve in all; there may be two cam shafts, each with five bearings and half a dozen cams; these will require, together with the magneto and pump shafts, five or six gears in the forward train; and the six pistons will demand their share of attention from the lubricating system. Here is a grand total of over fifty rubbing surfaces on a large motor, and the oil must be thoroughly and constantly distributed to each. Of course, many smaller motors, provided with but a single cam shaft and a three-bearing crank shaft, may possess but one-half of this number of lubricated parts, but at the least, At some of these portions, the movement is comparatively slow and the pressure is not great. Therefore such surfaces as the cams or valve stem rollers will demand less oil than will the bearings revolving at higher speed and carrying heavier loads. But it is the hardest-worked bearings that form the majority of the friction surfaces of a motor, as will be realized when it is remembered that all points on the circumference of a three-inch crank shaft bearing will travel at the approximate rate of 1,000 feet per minute—and these are the portions that also carry the heaviest load. But while the pistons can hardly be called bearings in the generally-accepted layman's definition of the term, they require the lion's share of the lubricant, and are the first portions of the motor to feel—and show—the effect of any failure of the oiling system. While in terms of miles per hour, the movement of the pistons may not seem very rapid, the thousand feet per minute at which each ordinarily travels is rather a high rate of speed when it is considered that it is entirely a rubbing or a sliding motion, and that the direction is reversed more than two thousand times during But this is only a small portion of the difficulties that must be overcome in cylinder lubrication. Not only must the oil pacify the rubbing surfaces and keep them well separated, but it must remain within a restricted territory of the cylinder walls. Whatever oil reaches the upper portion of the cylinder walls will be burned and will contribute to the formation of the carbon that is the mortal enemy of efficient running. Large quantities of oil burned in the cylinder will also form the dense clouds of choking blue smoke that the health authorities of many cities have been investigating, which have led to the enactment of city ordinances In view of the difficulty which has been experienced by many drivers in sufficiently lubricating the pistons without causing the car to emit clouds of smoke, it may well be asked, "Why cannot an unburnable oil be used and thereby eliminate this trouble?" This is out of the question, for the mineral oils now used are obtained from petroleum and are cousins of kerosene, gasoline, benzine, and many of the other highly-inflammable liquids that need but the touch of a match to burn almost with the rapidity of an explosion. But notwithstanding the excitable family to which the mineral oils belong, the modern motor car lubricants are removed a sufficient distance from their more inflammable relatives to enable them to withstand a temperature of between 400 and 500 degrees, Fahrenheit. This is sufficient heat-resisting ability to enable the oil to stay on the cylinder walls near the bottom of the stroke, where it is most needed; but even though its burning point could be raised to a degree double its present amount, it could not withstand the high temperature generated in the top of the cylinder at the time of the explosion. The temperature here Any oil, consequently, would find but small opportunity to remain in its normal state after it once reached a point at which it would be exposed to the heat of the explosions, and we must look for a preventive measure other than that of increasing the flash-point or burning-point of the lubricant. But this high temperature does not exist throughout the stroke, for as the piston descends and the gas expands, heat is given off until the oil on the lower portions of the cylinder uncovered by the piston is sometimes able to remain in comparative peace. And even though this oil remaining on the cylinder walls at the bottom of the stroke should be burned, it would not be present in sufficient volume to create the dense clouds of objectionable smoke. Consequently it is the endeavor of engineers so to design the pistons and lubricating system that excess oil will not be fed to the pistons and allowed to remain on the walls after the former have descended. But an excess amount of oil fed to the cylinders By the time that the exhaust gases have passed through the pipes and have expanded in the muffler, some of the blue smoke may have disappeared, and consequently the fact that a car does not give a trace of vapor at its exhaust should not necessarily be taken as an indication that the motor is not well lubricated. If the owner would satisfy himself that the cylinders are receiving a sufficient amount of oil, he may open the individual pet cock on each, and if he finds there a faint blue trail of smoke at each explosion in that cylinder, he may rest assured that harmony exists between the rubbing surfaces of the piston and the cylinder walls. With the increase in the size and power of Individual oil cups such as were used formerly, have been eliminated from the cylinders, and whatever sight-feeds there may be are placed on the dash in plain view of the driver. Instead of relying upon the suction of the cylinders for the positive feed to the piston, mechanically-operated pumps are used to force the oil to the various portions of the motor. In some systems, there is a separate pump for each oil lead. This is known as a mechanical The parts of the motor that are lubricated by an independent feed line in this manner may vary with different motors. In general, however, it may be said that it is seldom that the oil is fed directly to the piston, but that the lubricant is first distributed to the oil wells in the crank case. Here, the splash of the cranks as they revolve in the oil is depended upon to throw the lubricant upon the exposed portion of the piston as it reciprocates below the cylinder walls. The sides of the piston thus covered carry the oil to the cylinder walls. It is evident that if an excess amount of oil The main bearings on which the crank shaft revolves are generally supplied with oil by independent leads from the oiler, and when the above-described system is used they may be regulated independently of the splash feed lubricating pipes. Excess oil at the bearings will cause no damage, but each crank shaft journal does not demand as great an amount as that supplied to a piston and connecting rod bearing. Many lubricating systems that are now in popular use employ but one pump to force the oil to the various bearings and rubbing surfaces, and regulate the supply by the size of the After the proper level in each trough has been reached the excess oil overflows into the bottom of the crank case. From here, it is again started on its way by the pump and is distributed to the various bearings and troughs through the different pipes leading from the pump. As a further precaution against a smoking exhaust, some designers have added a baffle plate above each crank case compartment that serves to reduce the size of the opening through which the oil may be splashed. With this combination of troughs and baffle All motors are not so equipped, however, and in the case of those provided with the bona-fide splash system, care must be taken to keep the separate crank case compartments filled to the proper level. Too high a level in the crank cases will cause the motor to smoke; while the supply should not be allowed to become so low that when the angle of the crank case is changed—as in ascending a hill—the lubricant will run toward the rear and will not be reached by the scoop on the connecting rod bearing. This latter danger makes it advisable to give this system plenty of oil when any touring is to be done through a hilly district. In some lubricating systems, the oil is supplied as it is used, and either is discharged with the exhaust, or collects in the bottom of the crank case, from which it should be drained occasionally. In the circulating systems, however, which are now used on a majority of the cars, the same oil is used continuously until it becomes "worn" or filled with sediment and particles of dirt and other foreign matter. The pump used for maintaining this circulation may be either of the plunger, centrifugal, or gear type, and is generally housed in a portion Another successful system by which all the bearings of the crank shaft are positively lubricated is used on many of the best cars. In this system, a continuous oil hole passes throughout the length of the crank shaft, including its "arms" and connecting rod bearings. At each bearing, one or two small oil holes connect with this main artery and extend radially to the surface. Oil is forced into the longitudinal oil hole by means of a small pump, and naturally finds its way through every radial opening to all the bearings. The excess may overflow into the individual oil wells, from which it will be splashed upon the exposed portions of the pistons as they descend. It will be seen that, no matter what modern oiling system is used, the same kind of lubricant is supplied to all parts of the motor. This feature makes matters much simpler than was the case when one oil was used for the But no matter how reliable a lubricating system may be in its operation, the driver must do his share and make certain that fresh oil of the proper quality is supplied when needed, and assure himself that all the passages are free from obstructions. Negligence on the driver's part may result in one or more "stuck" pistons that will either seriously injure the motor, or will put it out of commission until the trouble can be remedied. If a sufficient supply In this case, the motor should be turned by hand until it is certain that the piston is again free in its cylinder. Liberal quantities of kerosene oil should be poured in through the spark plug opening, and if possible, the motor should be "rocked" back and forth by the flywheel to give the kerosene an opportunity to reach all parts of the piston and rings. The kerosene will serve to cut and remove much of the carbon and gummed oil and to make the way free |