Although gasoline is inflammable in its liquid state, its combustion is not sufficiently rapid to approach the explosive point necessary to render its energy available in the automobile engine cylinder. The proper proportion of gasoline vapor and air, however, forms a mixture that is highly inflammable and that will be entirely consumed in the engine cylinder under ordinary conditions within about one-twentieth of a second after the formation of the spark. This rapid combustion so nearly approaches the instantaneous action of an explosion that it may be considered as such in all ordinary discussions of the gasoline engine. Literally, however, the gasoline engine is not an explosion motor, but rather is it an engine of the internal combustion type. To obtain this gasoline vapor in an easily-controlled form the carburetor was designed as one of the most important adjuncts of the automobile. The modern, high-speed automobile motor, with its varying demands upon the carburetor, created the necessity for a more delicate, flexible, and compact vaporizer than was to be found in the "lamp wick" type. Consequently the wick was replaced by a small, slender, hollow tube having a cone-shaped opening at its upper end through which the gasoline from the feed pipe was made to pass. Fitting into the When the gasoline, rushing through the small tube, strikes the restricted opening of the needle valve, it is broken up into a fine spray which, under proper conditions, will become vaporized almost as soon as it comes in contact with a current of air. This air current is induced by the same pump-like effect of the pistons as that which sucks the gasoline through the needle valve, and thus it occurs only when the charge is desired in the cylinders. But the carburetor is not merely to provide a compact device for vaporizing the gasoline, for it must also furnish a means of regulating the proportion of gas to air. Gasoline vapor is only highly inflammable when mixed with the proper quantity of air, and if this proportion is varied above one limit or below another, The point to be emphasized, however, is the fact that the proper proportion of air to gasoline vapor, however it may vary with different grades, should be kept constant at all speeds of the motor whenever that particular grade of fuel is used. By volume, about 97½ per cent. of the mixture should be air and the remainder gasoline vapor, and it is the device that will the most nearly maintain this proportion under all conditions of speed, temperature, and air pressure that will prove to be the most delicate and flexible carburetor. A carburetor may be adjusted for different motors, or for different operating conditions of the same motor, by means of the needle valve. The farther end of the slim rod on which the needle point is mounted terminates in a thread and finger nut that projects through the shell of the carburetor. By turning this nut in one Throttling consists in restricting the size of the opening through which the mixture passes, and thus limits the amount of the charge that reaches the cylinders at each suction stroke of the piston. Throttling is used to reduce the power—and consequently the speed—developed by the motor, while a decrease in the amount of gasoline supplied to the air through the needle valve may serve to increase the power through an improvement in the nature of the mixture. Since the gasoline vapor, by volume, forms only about three per cent. of the explosive mixture admitted to the cylinders, a slight variation in the size of the needle valve opening will result in a marked change in the composition In view of the marked difference in the results obtained from the use of mixtures that are "just right," and those which vary but a slight percentage in the proportion of gasoline vapor to air, it may be well to examine, superficially, the effects of "rich" and "weak" charges, and therefrom to obtain a list of "symptoms" which may aid us to diagnose motor trouble properly. We all know that air—or oxygen—is required to support combustion. "Snuffing" a candle is merely covering its end so that air cannot reach the flame. For the same reason, gasoline in a covered tank cannot burn, no matter how great the heat applied to it. The heat of the electric spark in the cylinder, although intense, does not cover a sufficiently large area to ignite any charge except that composed of the proper proportion of gasoline vapor and air. If there is too much gasoline vapor, making A rich mixture will cause irregular explosions in the cylinders, and will often emit a black, pungent smoke at the exhaust. The motor will probably overheat easily, due to the slow-burning properties of the mixture and the resulting fact that a large portion of the cylinder walls uncovered by the pistons will be exposed to the flame. In some instances, the cylinders will miss fire at regular intervals, thus changing the synchronism of the impulses with a well-defined and periodic "skip" in the sound of the explosions. While these are by no means certain symptoms of a rich mixture, the first test to be made should be to tighten the needle valve adjustment slightly when the motor is running and to note any resulting improvement in the regularity of the explosions. It may sometimes be When a mixture is "starved", or when there is an insufficient supply of gasoline vapor to unite with the air admitted to the cylinders, the charge will not be highly inflammable and may not be ignited by the small spark formed at the plug. Even when ignition does take place, the resulting power impulse will be weak because of the comparatively small amount of pressure-producing gas in the mixture. The explosions may occur regularly for a while, but there will be a marked decrease in the power developed by the motor, and owing to the fact that weak mixtures may be slow-burning, "back-firing" will often result in some engines to which such a charge has been fed. On the other hand, if a motor will run at all on a weak mixture, it will produce better results than would be the case were the charge too rich in gasoline vapor. Consequently the needle valve should be closed as much as is consistent with smooth running of the motor, but the moment a loss of power or irregular explosions At low speeds of the motor, the pumping action of the pistons is not as great as is the case at high revolutions, and consequently the suction drawing the gasoline through the needle valve is diminished. For this reason, the needle valve opening must be made larger or the air passage restricted for slow speeds of the motor, and it was consequently necessary, on the old, non-automatic vaporizers, to increase the gasoline supply whenever the revolutions of the motor were to be reduced. The modern carburetor is sufficiently automatic in its action to provide the proper mixture within wide ranges of speed change of the motor, but even nowadays it is often found necessary to increase the gasoline supply or to reduce the amount of air admitted to the intake pipe whenever it is desired to throttle the motor down to a very low number of revolutions per minute. The automatic action of the ordinary carburetor is obtained by increasing the air supply at higher speeds of the motor. Consequently the motorist will realize that whenever the needle valve is to be set, such regulation should be made when the motor is well throttled, for if an ample gasoline supply is The air for the operation of the motor at ordinary speeds is supplied through a fixed opening in the carburetor connected with the chamber into which the gasoline spray is introduced. In addition to this, most carburetors are supplied with an "auxiliary air opening" which serves to furnish the additional air necessary for the mixture at high speeds of the motor. The fixed opening, being restricted in size, cannot admit the increased quantity of air demanded by the higher speeds of the motor. The auxiliary opening is provided with some form of automatic valve which may consist either of a series of ball "checks," a spring-actuated "mushroom valve," or a series of special valves, each of which opens at successively increased speeds of the motor. All of these devices operate on the same principle, however, and allow the increased suction of the motor to add to the size of the air passage automatically—either by the farther The regulation of the auxiliary valve is an adjustment that should be made only after the needle valve has been set properly for slow speeds of the motor. When this condition is obtained, the throttle should be opened and the further adjustment of the carburetor for high speeds of the motor should then be made through the auxiliary air valve. In other words, the needle valve should be set so that the motor runs properly at low speeds, while the adjustment of the auxiliary air valve should be made only to secure smooth operation at a high number of revolutions. It is not to be understood that less gasoline is actually required at high speeds of the motor because the supply often needs to be cut down at the needle valve under these conditions. Were the gasoline fed directly from the fuel tank to the needle valve of the carburetor it is evident that the rate of flow of the liquid would depend, to a large extent, upon the amount in the tank and upon the position of the car. This would cause each charge to differ in the proportion of gasoline vapor to air, and it is hardly probable that the motor could be run at all under such conditions. In order that the A cork or hollow metal float is placed in this float chamber and is mounted on a lever connected with a valve located at the end of the gasoline feed pipe. As the gasoline is admitted to the chamber, the float rises and closes the valve controlling the flow of fuel. As the gasoline is sucked through the needle valve from the float chamber, the float in the latter lowers, and the fuel is again admitted by the opening of the above-described valve. The float and valve are exceedingly delicate in their operation and the gasoline is thus kept at a constant level in the chamber under all conditions of the car and tank. The stem upon which the float of some carburetors is mounted is sometimes threaded and provided with a nut by means of which the float may be raised or lowered. This furnishes an adjustment for varying the level in the float chamber and determining at what point the If the float is too high on its stem, the gasoline control valve may not be operated until the fuel overflows in its chamber. This is known as a "flooded" carburetor and produces a rich mixture which will ultimately prevent the proper operation of the motor. Turning down the gasoline supply at the needle valve will not remedy this, for the fuel will reach the vaporizing chamber by another route. A flooded carburetor often gives trouble, and while it may be remedied easily, the amateur may experience difficulty in locating its source. As soon as it is discovered that a carburetor has become flooded, the needle valve should be tightened so that no gasoline can pass through it, and the motor should then be cranked. This will serve to evaporate the A float that is set too low on its stem will close the fuel supply valve before a sufficient amount of the fuel has flowed into the chamber, and will form a "lean" mixture at high speeds of the motor—even though the needle valve should be opened wide. The obvious remedy for such a condition is to raise the float until the gasoline will be maintained at the proper level. If there is no nut and screw adjustment by which the float may be raised, the arm to which it is attached, and which is connected with the valve, may be bent slightly. But the motorist should not "jump at conclusions" and assume that the float is improperly set the moment the carburetor begins to flood or the motor appears to "starve" at high speed. The first condition may be caused by a piece of dirt or other foreign matter that may have become lodged on the valve seat and prevented the valve from closing when the The difficulty may generally be remedied easily by draining the gasoline from the float chamber after the valve in the main supply pipe has been turned off. The offending foreign matter will generally be carried with the gasoline as the latter is drained, and the valve in the feed pipe may again be opened as soon as the drain cock is shut off. If this fails to remedy matters, it is probable that the difficulty lies with the float. A clogged gasoline pipe or dirty strainer will produce the same effect on the operation of the motor as will a float that is set too low on its stem. When the motor seems to starve at high speed, and it is evident that there is sufficient gasoline in the tank, the union should be disconnected at the point where the feed pipe joins the carburetor. If there appears to be an ample flow through this pipe when the main valve is opened, it is probable that the stoppage has occurred in the strainer. If the flow through the main feed pipe is not free, however, it is possible that the vent hole in the filler Probably the simplest method of determining whether the trouble lies in a low float is to prime the carburetor and to observe the ease with which this can be done and its effect upon the engine. Nearly every carburetor is provided with a "flushing" or "priming" pin by means of which the float can be depressed so that the gasoline chamber will be filled rapidly to a point above its normal level. This is useful in starting, as the desired rich mixture is quickly obtained without an undue amount of cranking. If the carburetor flushes easily, it is evident that there is no serious stoppage in the pipe. If this easy flushing is followed by good running on the part of the motor, and if this, in turn, is succeeded by gradually-diminishing impulses indicating a weakening mixture, it is quite evident that the float is preventing the flow of the gasoline at the proper time. To enable low grades of fuel to be properly vaporized under all running conditions, many carburetors are provided with a water jacket surrounding the vaporizing chamber. This jacket is connected with the cooling system of the motor, and the hot water surrounding the chamber so warms the interior that vaporization is greatly facilitated. Some of these systems are provided with a shut-off cock by means of which the carburetor may be operated with hot water in the jackets, or not, as desired. Other carburetors employ a jacket surrounding the exhaust pipe of the motor and connected with the vaporizing chamber. The air The higher the degree of specific gravity of a fuel on the BaumÈ scale, the more volatile will it be, and consequently a 68° gasoline will vaporize more easily and give more power than will a 60° or 62° fuel. 72° gasoline is often used in races, but the average motorist does not get better than 64°—and he is sometimes lucky to obtain fuel of that specific gravity. A hydrometer, or specific gravity tester, is a convenient instrument for the average motorist to own, and with it he may tell exactly what grade of fuel he is paying for. The BaumÈ scale, by which all gasoline is tested, reads in degrees, and the specific gravity is obtained by observing the depth to which the Water in the fuel is an annoyance that is often encountered by the automobilist and the motor boatman, and this will make its presence known by causing the motor to skip when all adjustments and connections seem to be in perfect condition. Water is much heavier than gasoline and has no affinity for it, and consequently, as it sinks to the bottom of the tank, a few drops in a large amount of gasoline will cause trouble by passing out through the needle valve at intermittent intervals and forming an unexplosive mixture. The presence of the water in the fuel may be detected easily without the use of a hydrometer by drawing some gasoline from the bottom of the tank into a tin or white-enameled cup. If water is present, it may be seen in the form of small globules in the bottom of the cup. If the contents of the cup are poured over a flat surface so that the liquid may be allowed to spread, the gasoline will be seen to cover a large surface and evaporate quickly, while the water will seem to remain in the globules The practice of "doping" the fuel tank by adding to the gasoline ether or some other highly volatile liquid is not to be recommended to the average motorist. A few ounces of ether or chloroform added to the fuel will form a more volatile and consequently more powerful mixture, but unless the greatest care is taken, the motor is liable to be completely ruined by such a procedure. Numerous cases are on record in which cylinder heads have been blown off or castings cracked by the force of some of the explosions when too much "dope" has found its way into the mixture. Although the average motor gasoline obtainable nowadays is hardly all that could be desired as automobile fuel, a little care taken when filling the tank will eliminate many of the carburetor annoyances to which many cars seem to be subject. The cap of the tank should never be taken off when the air is filled with particles of dust that are liable to find their way into the fuel, and care should be taken to |