There has always been a strong prejudice in favor of the four-cycle motor for the power plant of the gasoline automobile. This may be due to the fact that designers have spent most of their time and energy on the development of this engine, and that therefore the two-cycle type has not yet been sufficiently "tried out" in the motor car to enable us to judge fairly as to its real merits. Certain it is that in the few instances in which the two-cycle motor has been used as an automobile power plant, the results have been highly satisfactory, and the present vogue of the four-cycle motor—with well over 98 per cent. of the automobiles now made adhering to this type—is largely due to popular prejudice in its favor. As has been described in the first chapter of the present volume, the four-cycle motor devotes a separate stroke to each of the events of expansion, scavenging or expulsion of the All outside connections with the base are tightly closed on the down-stroke of the piston, and consequently the recently-inhaled charge will be compressed, ready for its entrance into the cylinder above the piston as soon as the connecting passage is opened. This passage is opened, as has already been described, at the bottom of the stroke and the compressed charge rushes in and fills the space in the cylinder that at that time is being vacated by the exhaust gases. The majority of two-cycle motors are made Now, as the piston is forced downward, it uncovers the exhaust port and an easy means of escape is furnished for the burned gases. Immediately after this, the intake port on the opposite side is uncovered by the still-descending piston, and the previously compressed charge, which is only awaiting the opportunity in the base, "blows" in. The exhaust gases are still escaping when this happens, and therefore it is necessary to prevent the incoming charge from passing directly across the top of the piston and out through the exhaust port before use has been made of its explosive qualities. If the charge is drawn directly into the base from the carburetor, a check valve must be used in the pipe connecting the two; otherwise the mixture would be forced back into the carburetor the instant the piston began its descent. A two-cycle motor drawing its charge in this manner is known as the two-port type, for there are only the exhaust and the inlet ports in the interior of the cylinder walls. The passage connecting the carburetor with the base may enter at the bottom of the cylinder, for this space and the base are the same when the piston is at the top of its stroke. Thus This port is again covered as soon as the piston starts on its downward journey, and thus the charge is prevented from escaping until the intake port connecting the base with the top of the cylinder is opened. Such a two-cycle motor is known as the three-port type, and it will be seen that not even an automatic check valve is used in its passages—and it is consequently a "valveless" motor in the liberal interpretation of the term. The high velocity of the charge recompenses for the short time that the port is uncovered, and consequently the base is filled with nearly as large an amount of charge as is the case with the two-port motor—which allows the incoming gases to enter the crank case during the entire upward stroke of the piston. It will thus be seen that the piston of the two-cycle motor acts as a pump in two ways. First, the vacuum is formed that serves to draw the charge into the crank case, or base, of the motor; and second, the return stroke of the In a preceding paragraph it has been described in what manner the incoming charge in the two-cycle motor was used to "scavenge" Two-cycle motors have been designed which combine the principles of action of both the Another design for obtaining intake compression independent of the crank case consists of a collar, or circular enlargement at the base of the piston. This collar reciprocates within the lower portion of the piston in a chamber which has been bored to the exact size. The collar consequently forms a variable base for this compartment, and as the piston descends, the collar travels with it, thus drawing in a charge of the fresh mixture. On the upward stroke, this mixture is compressed by the collar as it reduces the size of the compartment. It will be seen that such a motor can be designed to compress the charge to almost any amount. This interchange of courtesies is obtained through the good offices of a distributor in the form of a rotating, hollow cylinder having ports cut throughout its length that register with corresponding passages leading to the various cylinders. This distributor is timed with the crank shaft of the motor, and may be driven either by a gear or by a silent chain. As the mixture is compressed in the separate chamber of one cylinder, the passage leading to the distributor is opened by the revolution of the latter, and the charge is led through this passage, the distributor, and thence through another passage—also opened by the distributor—to the proper cylinder. The cylinders The force of the explosion in a gasoline engine cylinder is not only dependent upon the amount and nature of the inflammable mixture admitted, but upon the force with which it is compressed, as well. The average compression pressure of a two- or four-cycle engine of the ordinary type, is from 60 to 70 pounds per square inch. Inasmuch as this pressure, assuming that the rings and valves are tight, is proportional to the displacement of the piston stroke compared with the volume of the clearance space, the amount of compression is constant at all speeds and loads of the motor. Should it be possible to increase this compression at will, it would be found that, with a warm motor, a pressure in the neighborhood of 100 pounds per square inch would serve to generate sufficient heat to ignite the mixture before the formation of the spark—for it is one of the elementary laws of physics that a gas will become heated when compressed. It is for this reason that the compression pressure of the ordinary automobile motor is kept in the neighborhood of 70 pounds per square inch. A method of varying compression pressure The motor mentioned above operates on somewhat the same principles as those found in the Diesel engine, which will be, as many predict, the ultimate type of internal combustion motor. The Diesel motor is not necessarily a particular make of engine, but bears Although the Diesel principle may be applied to either the two or four-cycle type of motor, it is to the former design that it lends itself unusually well. This motor operates a two-stage air compressor in conjunction with a storage tank. At the beginning of the compression stroke, pure air under high pressure is admitted to the cylinder. In its upward travel, the piston compresses this air to a pressure approximating 500 pounds per square inch. While it has been shown that such a pressure This is another feature in which the Diesel motor is entirely different from the Otto type, for the latter must employ a carburetor to vaporize the fuel before it can be admitted to the cylinder. But inasmuch as there is already a pressure approximating 500 pounds per square inch in the cylinder of the Diesel motor at the time the fuel is injected, there must be a force behind the latter of 750 or 1,000 pounds per square inch in order to enable it to overcome the resistance of the highly-compressed air in the cylinder. In short, the liquid fuel is sprayed directly into the cylinder at a pressure of 750 or 1,000 pounds per square inch. This tremendous pressure is sufficient, not only to vaporize the particles of fuel as soon as they enter the cylinder from the nozzle, or "atomizer," but to cause them to burst The fuel continues to be injected into the cylinder during the greater part of the down-stroke of the piston. In this respect, also, is the Diesel motor radically different from the Otto type, for the latter receives its full charge at one time and fires the entire amount in a single "explosion." In the Diesel motor, on the other hand, the ignition continues as long as fuel is admitted, and thus this engine is of the internal combustion type in the strictest sense of the word. It is, after all, the expansion of the gases due to the heat of combustion that produces the power in a gasoline engine, and if the fuel can be so admitted that it can burn during the greater part of the stroke, a high efficiency will be obtained. The exhaust gases of the ordinary two-cycle motor pass out of the exhaust port as it is uncovered by the descent of the piston. Those that remain are forced out by the sudden admission of the fresh charge, which is deflected upward and is intended to scavenge the top of the cylinder. But it is claimed that thus employing the fresh mixture as a scavenging agent is At the high pressure at which the fuel is injected into the cylinder of the Diesel engine, practically any grade of gasoline, naphtha, kerosene, crude oil, or other form of petroleum can be vaporized. The compressed air employed in the compression and injection of the fuel is also used for starting the motor, for this is not a type that is amenable to hand cranking. Thus the Diesel type of engine can be run in any weather on any grade of oil fuel, and as the carburetor and electrical ignition system are absolutely eliminated, two of the great sources of trouble of the automobile Just when this type of motor will be taken up by automobile designers is difficult to state. The Diesel type of engine has proved so wonderfully successful for large stationary power plants and for marine purposes, and its reliability is so absolute on all grades of fuel, that this motor may solve the failing-gasoline-supply problem. As yet, about 100 horsepower is the smallest unit that has been made in any quantities, but it was recently announced that this type would, in the very near future, be built for motor trucks and other commercial vehicles. Consequently, it is well for all those interested in the application of the two-cycle motor to the automobile to understand the elementary principles on which this radically-different type operates. Transcriber's note: Inconsistent hyphenation has been retained unless one form predominated. The following corrections have been made: Everything else has been retained as printed. ******* This and all associated files of various formats will be found in: Updated editions will replace the previous one--the old editions will be renamed. 1.F. 1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem. 1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS', WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. 1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions. The Foundation's principal office is located at 4557 Melan Dr. S. Fairbanks, AK, 99712., but its volunteers and employees are scattered throughout numerous locations. Its business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation's web site and official page at www.gutenberg.org/contact The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate. International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff. Most people start at our Web site which has the main PG search facility: www.gutenberg.org |