In the general meaning of the term, a bearing is any part that carries weight or pressure and at the same time rubs over another surface. According to this definition, the portion of the cylinder walls traversed by the pistons are bearings, and that is in reality the case, but the term has come to be applied more specifically to the part of the machine in which another part revolves, either continuously or intermittently. Thus the portions of the crank shaft on which it is supported and the parts of metal in which they revolve combine to form the crank shaft bearings. The shaft or stud on which a gear or wheel is mounted and on which it revolves is the bearing of that gear or wheel. Although they are concealed, as some six-cylinder motors may be provided with as many as three dozen, or more, bearings—if we consider those on which the cam, pump, and magneto shafts and the gears are mounted— The expert will judge of the condition of a motor by the wear that has occurred in the bearings rather than by any exhibition of temporary power that it may develop in a short test, and it is for this reason that the "general public" runs a risk whenever it buys a second-hand car that has not been thoroughly overhauled by a reputable factory or inspected by a competent engineer. The bearings are in reality the vitals of the motor, and when these are worn beyond the point of easy adjustment or renewal, the repairs necessary to place the machine in good condition would oftentimes cost more than the entire engine is worth. But even in a badly-worn motor, the bearings may be "taken up" and "doctored" so that, for a while at least, the engine will seem to run perfectly and develop its full power. This will not be for long, however, and soon the motor will begin to pound, knock, and rattle until an In no machine are the bearings subjected to more severe usage than in the automobile motor. In order that the motor car power plant shall be light in weight and occupy but a small amount of space, the power must be transmitted at high speeds. In many an automobile motor, the pressure imparted to a single bearing during a certain portion of its revolution may frequently be well over two tons, and in this same bearing, the "speed of rubbing" may approach eight or nine hundred feet per minute. In other words, at normal speeds of the motor, about a sixth of a mile of steel surface will rub over a certain point in each crank shaft bearing during every minute that the engine is running. When properly lubricated, an iron or steel shaft will run in almost any kind of a metal bearing that is sufficiently strong to carry the weights and pressures imposed upon the shaft. The friction generated between two different metals that rub against each other, however, varies according to the composition of those metals, and consequently it is advisable to employ some material for a bearing that will offer a minimum resistance to the turning of the But even between the best-lubricated surfaces, employing the most efficient metal as a bearing, some wear is bound to occur. The crank shaft of a four- or a six-cylinder motor is forged or sawed from one piece of steel, and with the accurate machining, finishing, and grinding to which it is subjected, it becomes an expensive part of the engine. Consequently it is advisable that the wear of bearings of such parts shall be restricted to the "boxes" or surrounding stationary metal in which the shaft revolves at these points. In order that all wear shall occur here, rather than in the shaft, the boxes are made of or lined with a softer metal. If the crank shaft is of hard steel, the bearing metal may be of brass or bronze, but it has been found that babbitt metals give the most satisfactory service for such conditions—particularly as a sufficiently hard crank shaft is difficult to produce commercially. Not only is a babbitt metal softer than the steel of the shaft and consequently receives practically all the wear of the bearing, but it The purpose of lubrication is to reduce friction between the two surfaces in contact. Friction generates heat, and consequently the temperature of a bearing to which a sufficient supply of oil is not delivered will be raised to a very high point. This high temperature will cause both parts of the bearing to expand, with the result that the fit becomes very tight and the shaft binds or "seizes" in its box. This is the familiar "hot box," so often the bane of railroad men, and if the shaft is still run under these conditions, the bearing material will be torn out and the surface of the shaft, axle, or whatever the revolving portion happens to be, will be cut and abraded, oftentimes beyond the possibility of repair. It is such accidents as these that are prevented by the use of an easily-melted babbitt metal. If the oil supply becomes insufficient so that the temperature of the bearing is raised above Babbitt metals may be of various compositions and proportions and many contain lead, but those which have been found to give the best results for use on the crank shafts of automobile motors are composed only of tin, antimony, and copper. If lead is used at all for this purpose, it should not appear in proportions above one per cent of the total composition. Inasmuch as a babbitt metal will fuse at a comparatively low temperature and is much softer than steel, it is obvious that such a material will not withstand heavy pressures unless reinforced and is unsuited for structural purposes. Consequently the babbitt is placed in the bearing box in the form of a thin lining within which the shaft revolves. When the shaft is "lined up" in the box, the hot babbitt metal may be poured in until the space is entirely filled. When the babbitt cools, The above method of renewing "burned out" bearings applies to babbitts in general, but the severe usage that automobile engine crank shaft and connecting rod bearings are called upon to withstand necessitates the exercise of a certain amount of additional care. It is necessary that the box shall fit the shaft perfectly, so that there can be no "play," and yet the shaft must be allowed to turn easily within its surrounding babbitt metal. As was stated above, the shaft may be easily loosened from the babbitt metal after the latter has cooled, and this would form a satisfactory type of bearing were it not advisable that some means be supplied by which the wear could be taken up without renewing the entire babbitt lining. The bearing boxes of the crank shaft are each made in two halves, the lower portion There may be dove-tail grooves cut in the inside of the halves of the boxes to retain the babbitt metal after it has been poured in place. Consequently, in order to remove the cap after renewing the babbitt lining, the babbitt metal must be cut in two at the joint between the two halves of the box. The two halves of the box, instead of fitting closely together, are separated by thin strips of copper or fiber known as "shims" that serve to relieve the shaft from the pressure of the bolts when the bearing cap is screwed in place. In other words, the two halves of the box must be held tightly in place by means of the bolts and nuts, but none of this pressure should rest on the revolving shaft, These shims provide the method of taking up the wear in the babbitt that will eventually result. By loosening the box retaining bolts and removing the required number of shims, the halves of the box will be brought closer together. When the bearing cap is screwed securely in place, the shaft should be able to revolve freely without binding, and yet the fit should be sufficiently tight to prevent any "play" at right angles to the length of the shaft. The pressure of a shaft should not be concentrated in one place, but should be distributed over as large a surface of the babbitt metal as is possible. A few years ago, when renewing or repairing a bearing, it was considered sufficient to pour in the molten metal or to remove the proper number of shims—and the bearing was then said to be ready for its work. But even though no play was apparent, it was possible that the shaft rested on only a few portions of the bearing surface; and the increased attention that is now paid to the details of automobile construction is no better In order to determine at exactly what portions of the babbitt lining the pressure is too great, a dye or paint known as "blueing" is used. The bearing portion of the crank shaft is painted with this, and the cap is then screwed in place. If the crank shaft is then turned and the cap removed, it will be found that the blueing has been transferred from the bearing to the portions of the babbitt metal on which the pressure is the greatest. These portions should then be shaved with the tool mentioned above, and the same test repeated. As the excess metal is removed, it will be found that the blueing gradually is deposited over a larger area of the babbitt, but it is not to be supposed that the fit can be made so perfect that the color will be distributed evenly over the entire surface. Care should be taken to screw the There is nothing that will heat a bearing so quickly as a poor alignment of the shaft supported by it. For this reason gasoline engine crank shafts are made exceptionally strong and heavy, especially those that are supported only at their extremities, or at these points and in the center of their length. A shaft that is bent or twisted to even the slightest degree will soon "burn out" all of its bearings, regardless of the amount of oil that may be fed to them. This is because of the unequal pressures on the different sides of the bearing that allow no room for the admission of the film of oil or other lubricant that is necessary in all cases to prevent a "hot box." On the other hand, the bearings must all be in perfect alignment, for to set one slightly "off" would produce the same result as though the shaft were bent. It will be seen that the use of babbitt produces a "self-aligning" bearing, for the straight shaft may be set in its proper position and the molten metal poured around the interior of the boxes. As it is highly important that the cap screws or nuts holding the bearing cap in place should remain set as tightly as possible, precautions Many modern automobile motors are designed with the crank shaft running in ball bearings. The type generally used consists of a row of balls set between the inner and outer edges of two concentric rings. The inside of the outer and the outside of the inner ring are grooved, constituting the ball "race" which forms the surface upon which the balls roll and which, at the same time, serves to hold them in place. Each ball of the same bearing must be made of exactly the same size as its companions—or at least within one or two ten-thousandths of an inch—and each one must be large enough and of sufficient strength to withstand, by itself, the entire pressure in that bearing. The inner ring slips over the bearing portion of the shaft with a comparatively tight The inner ring turns with the shaft, thus causing the balls to roll in their race. Each ball rolls about its own axis, and the entire series describes a circular motion in the same direction as that taken by the shaft, but considerably slower. Consequently there is no rubbing in such a bearing, all the motion being of the rolling type, and as this reduces friction to a minimum, the balls may be run without oil, although lubrication of the proper kind would certainly not harm the bearing. Ball bearings are adapted only for a two-bearing crank shaft, for inasmuch as the rings must be slipped over the shaft, it would be manifestly impossible to provide a ball bearing in the center, or in any other portion beyond a crank. Next in importance to the main bearings of a crank shaft are those by which the connecting rods communicate their motion to the cranks. These are known as the crank pin bearings or the "big end" of the connecting rod bearings. But inasmuch as the upper, or smaller, end of the connecting rods are termed the wrist-pin bearings, the other end may be called simply the connecting rod bearing. The connecting rod bearings are similar to Consequently it is the connecting rod bearings that will become loose and require "taking up" before any attention need be bestowed on the main bearings. The wear will increase in the connecting rod bearing as the play becomes greater, and if matters are not remedied, the box may eventually be broken, with the result that the end of the connecting rod thus freed will start on the "rampage" and will punch several pieces out of the bottom of the crank case. Brass or bronze bearings may be used at the big end of the connecting rods, but the large majority of motor car engines are provided with babbitted bearings at these points. It is especially necessary that these bearings Inasmuch as the connecting rod bearings are subjected to such a variety of strains, and as looseness at these points will result in serious wear, it is doubly necessary that the nuts and bolts holding the bearing caps in place should be securely wired or held tightly by means of the previously-mentioned cotter pins. It is evident that the base of the large end of the connecting rod forms the upper half of the bearing box, while the cap constitutes the lower end and is attached from the bottom. The connecting rod bearings on some motors The wrist-pin bearing is located at the upper, or small, end of each connecting rod, and, although it also carries the full force of each explosion, it is not subjected to as great wear as is the bearing at the other end of the connecting rod. The reason for this is that this bearing does not revolve and its friction surface is reduced to the comparatively small arc through which the connecting rod swings. Wear can occur here, however, and because this bearing is more inaccessible than is the crank shaft or connecting rod bearing, trouble at the wrist pin is often overlooked. The wrist pin can only be reached by the removal of the piston and connecting rod. In the majority of designs the wrist pin is placed In other types of wrist pin bearings, the pin is held stationary in the connecting rod opening and turns with it as the connecting rod swings through its arc on each stroke of the piston. With such a design, the bearing surface is formed by each end of the wrist pin and the openings in the sides of the piston walls in which the wrist pin rests. In order to form an easily-replaced bearing surface, these openings in the piston walls are lined with brass or bronze bushings that receive the major part of the wear, as has been described in connection There is nothing complicated or mysterious connected with the renewal or repair of bearings, but the man who makes such replacements or adjustments must be an accurate and careful worker, and while he need not be a "born machinist," he must at least possess the "knack" of handling tools properly. And he must, above all, realize that the designers and manufacturers of his motor have been dealing in measurements of the thousandth part of an inch and that too great care cannot be taken in the repair of bearings to obtain a perfect fit. If he is renewing a connecting rod or a wrist pin bearing, he must also remember that the piston has formerly been traveling over a certain area of cylinder surface that has not varied in length the ten-thousandth part of an inch between one stroke and the next. Consequently, the babbitts or bushings should be so replaced that the piston shall occupy the same position relative to the cylinder walls at the top and bottom of its stroke that it did formerly. In other words, by varying the thickness of the top of the babbitt he is replacing, he may change the "center" of the bearing so that the piston will start on its upward |