THE GEOLOGICAL RECORD 'All the Epochs of the Past are only a few of the front carriages, and probably the least wonderful, in the van of an interminable procession.' J. B. Bury (The Science of History). The portion of the earth's surface accessible to investigation is made up in part of accumulations of old sediments, some indistinguishable from the shingle, sand, and mud now in process of formation by the ceaseless action of denudation; others have been hardened, gently folded or violently contorted and so far altered by crust-movements as to render their sedimentary origin well nigh unrecognisable. It is these sediments of former ages, the dust of lost continents, in which are preserved the majority of the fragmentary remains of plants and animals, the flotsam and jetsam of successive phases of evolution. The crust of the earth, as Darwin wrote, 'with its imbedded remains must not be looked at as a well filled museum, but as a poor collection made at hazard and at rare intervals'(19). It is from this Sir Joseph Hooker in a letter to Darwin in 1859 speaks of his 'conviction that we have not in a fossilised condition a fraction of the plants that have existed, and that not a fraction of those we have are recognisable specifically'(12). Considering the nature of the palaeontological documents the wonder is how much they have taught us, and we may look with confidence to the results of future research in a field of which the importance has only recently been appreciated. With the strata of sedimentary origin are frequently associated igneous rocks, and in many continental regions, as in the majority of oceanic islands, the crust of the earth consists wholly of volcanic material or of rocks produced by the gradual solidification of molten magmas. Rocks composed mainly of carbonate of lime, such as limestones and chalk, bear witness to ocean beds or to sediments deposited on the floors of inland seas beyond the reach of land detritus where coral reefs were reared or the shells and other calcareous skeletons of animals supplied the material for future land. In While there is little difficulty in explaining the nature of much of the earth's crust, in several parts of the world the strata are totally unfossiliferous and closely simulate crystalline rocks. In many cases it is believed that such strata represent ancient sediments which in the course of ages have been reduced by metamorphic agencies to a condition which has obscured or entirely obliterated all traces of their pristine state. Since the pioneer work of William Smith, who in the early days of the nineteenth century first realised the importance of fossils as aids to the determination of relative age, geologists have devoted themselves to the task of correlating the sedimentary rocks of the world, using as criteria the order of superposition of the strata and the nature of their organic remains. The result has been to classify portions of the earth's crust into periods or chapters, which together constitute a record of geological evolution as complete as it is possible to obtain from the available data. The accompanying table shows the order of sequence of the epochs, which stand for terms of years of a magnitude beyond our powers to grasp. The division of geological history into larger and smaller periods does not imply the recurrence of sudden revolutions; it is in some measure dictated by considerations of convenience, but more particularly by our ignorance of certain stages in the history of the world due to the imperfection of the record. GEOLOGICAL TABLE. Showing the position in the Geological Series of the strata referred to in this volume.
In certain parts of the world, as for example the north-west Highlands of Scotland, the Malvern Hills, Scandinavia, and in many other regions in Europe and North America, geologists have recognised what they believe to be the foundation stones of the world. These Archaean rocks, which underlie the oldest fossiliferous strata, belong to a period of geological evolution from which it appears to be hopeless to obtain any light as to the nature of the contemporary organic world. The earliest vestiges of life so far discovered exhibit a high degree of organisation, which unmistakably points to their being links in a chain extending far beyond the limits of the oldest In descending the Geological series, we begin with superficial deposits, such as peat and river-gravels found subsequently to the underlying boulder-clay of the Glacial period. The remains of forest trees preserved in the peat and in submerged forests round From deposits of post-Glacial date abundant plant remains have been obtained, but we cannot say with any degree of certainty what proportion of these plants remained in Britain during the Ice age, and whether the greater part of the vegetation, the relics of which have been discovered in pre-Glacial beds, was destroyed or driven south by the advancing ice. We may briefly consider some of the more interesting facts brought to light by the investigation of the fossil plants in the Lower Pleistocene and Upper Tertiary beds. It is mainly to the researches of Mr Clement Reid into the vegetation of Britain immediately preceding the Glacial period, that our knowledge of this phase of the history of the British flora is due. Fig. 3. Pre-Glacial plants from Mundesley (A), Norfolk and Pakefield (B, C), Suffolk. (Photographs by Mr Clement Reid and Mrs E. M. Reid.) A. Bidens tripartita Linn. (× 6); B. Picea excelsa Linn. (nat. size). C. Stellaria holostea Linn. (× 12). On the coast of Norfolk in the neighbourhood of Cromer the sections of the cliffs reveal the existence of a succession of sands, clays, and gravels underlying Glacial deposits; this material was probably laid down near the mouth of the ancient Rhine, which in the latter part of the Tertiary period flowed across a low area, which is now occupied by the shallow southern half of the North Sea(27). The plant-fragments found in these river-sediments indicate a Fig. 4. Trapa natans Linn. (nat. size). From Mundesley. (Photographs by Mr and Mrs Reid.) From the so-called Cromer forest-bed and associated deposits on the Norfolk coast several pre-Glacial plants have been obtained, indicating a temperate climate during this phase of the Pleistocene period. A few arctic species, such as the dwarf birch and arctic willow obtained from the deposits next above the Cromer forest-bed, herald the near approach of glacial conditions. It may be remarked in passing that no satisfactory evidence has been discovered in Britain of the existence of man in this part of Europe in pre-Glacial days: it is, however, believed that flints from Tertiary strata on the continent show traces of human Though comparatively recent in terms of geological chronology, the remoteness, according to ordinary conceptions of time, of the Tertiary period is brought home to us when we endeavour to grasp the fact that it was during this chapter in the earth's history that some of our highest mountain-ranges, such as the Alps, the Carpathians, and Himalayas were formed by the uplifting of piles of marine sediments. From Tertiary strata in the Isle of Wight, on the Hampshire coast, and in the London basin numerous fossil plants have been obtained, which afford convincing evidence of climatic conditions much more genial than those of the present day. The presence of palm leaves and of a wealth of other sub-tropical plants in Lower Tertiary beds in England reveals the existence of a flora differing considerably both from that in the uppermost Tertiary beds of Norfolk and from the modern British flora, but closely allied to the present Mediterranean flora. The basaltic columns of the Giants' Causeway and of the Staffa Cave, and the terraced rocks which form Fig. 5. Nipa fruticans, Thunb. A. On the coast of the Malay Peninsula. (Photograph by Prof. Yapp.) B. Head of fruits (1/5 nat. size). From a specimen in the British Museum. While the higher members of the Cretaceous system, as seen in the chalk cliffs and downs, represent the upraised calcareous accumulations on the floor of a fairly deep and clear sea, the lower members testify to shallower water within reach of river-borne sand and mud. 'During the Chalk period,' as Huxley wrote, 'not one of the present great physical features of the globe was in existence. Our great mountain ranges, Pyrenees, Alps, Himalayas, Andes, have all been upheaved since the chalk was deposited, and the Cretaceous sea flowed over the sites of Sinai and Ararat'(29). The Wealden strata, at the base of the Cretaceous system, as seen on the Sussex coast, in parts of the The rocks comprised in the Jurassic system extend from East Yorkshire to the coast of Dorsetshire; they consist of a succession of limestones, clays, sandstones, and a few thin beds of impure coal. Sediments of this age also occur, though to a much less extent, on the north-east coast of Scotland and in a few The passage from the Jurassic to the underlying Triassic system is formed by some shales and limestones in South Wales containing remains of fish and other marine organisms. These so-called Rhaetic beds are poorly represented in the British area, but on the continent of Europe and in other regions the sediments of this age bulk much more largely and have yielded a rich collection of plants. The rocks of the upper division of the Triassic system, as seen in the Midlands, point to the prevalence of desert conditions; and in the grooved sand-polished surfaces It is by a patient study of the waifs and strays of the vegetation of successive phases of the world's history preserved in sedimentary strata, that it has been possible to follow the history of many existing plants and to establish links between the present and the past. |