I. The Unseen Values

Previous

The United States has not embarked upon its formidable program of space exploration in order to make or perpetuate a gigantic astronautic boondoggle. There are good reasons, hard reasons for this program. But, in essence, they all boil down to the fact that the program is expected to produce a number of highly valuable payoffs. It not only is expected to do so, it is doing so right now.

Many of the beneficial results can be identified.

Those already showing up are detailed in the sections of this report which follow. They include the most urgent and precious of all commodities—national security. Beyond that, they also include a strengthened national economy, new jobs and job categories, better living, fresh consumer goods, improved education, increased health, stimulated business enterprise and a host of long-range values which may ultimately make the immediate benefits pale into relative insignificance.

Practical uses such as those just listed mean the taxpayer is more than getting his money's worth from American space exploration—and getting a sizable chunk of it today.

Nevertheless, if we can depend on the history of scientific adventure and progress, on its consistent tendencies of the past, then we can be reasonably sure that the greatest, finest benefits to come from our ventures into space are yet unseen.

These are the unpredictable values, the ones which none of us has yet thought of.

Inevitably they lag behind the basic research discoveries needed to make them possible, and often the discoveries are slow to be put to work after they are made. Investors, even governments, are human, and before they invest in something they normally want to know: What good is it?

We can be sure that many American taxpayers of the future will be asking "what good is it?" in regard to various phases of the space program.

There was an occasion when the great Scottish physicist, James Clerk Maxwell, was asked this question concerning one of his classic discoveries in electromagnetism. Maxwell replied: "What good is a baby?"

Now, as then, it takes time for new knowledge to develop and become useful after its conception and birth.

SOME EXAMPLES OF THE UNEXPECTED

A graphic illustration of "unseen" benefits in regard to atomic energy has been expressed by an experienced researcher in this way:

I remember a conversation I had with one of our nuclear scientists when I was a member of the Weapons Systems Evaluations Group almost 10 years ago. We were talking about the possible peaceful applications of fission. We really could think of little that could be done with it other than making fissionable material into a form of destructive power. There had been some discussion about harnessing the power of fission, but this seemed to us to be quite remote. It seemed difficult to conceive of the atomic bomb as anything but sheer power used for destructive purposes. Yet today the products of fission applied to peaceful uses are many. The use of isotopes in industry, medicine, agriculture are well known. Food irradiation, nuclear power reactors, now reactors for shipboard use, are with us, and it is hardly the beginning. I frequently ask myself, of late, what 10 years from now will be the commercial, shall we call it, applications of our missile and rocket programs.[2]

There are innumerable examples of the way in which invention or discovery, or sometimes just simple human curiosity, result in useful payoff. And frequently no one suspects the direction the payoff finally takes. The point, of course, is that any knowledge eventually pays dividends. The things we learn from our national space program will produce benefits in ways entirely unrelated to missiles or interplanetary travel. (See secs. III and IV.) The reverse is also true; knowledge gained in areas quite remote from outer space can have genuine value for the advance of space exploration.

Investigation into the skin of a fish provides a good case in point.

A German inventor who migrated to California after World War II had long been interested in ways to reduce the drag of friction produced by air or water on the surface of objects passing through them. One day, while watching a group of porpoises cavort past a speeding ship with the greatest of ease, it occurred to him that the skin of these animals, if closely studied, might shed light on ways of cutting surface friction. It was many years before the inventor was able to enlist the aid of aquarium managers in securing porpoise skins for study. In 1955, however, he obtained the necessary skins and found that dolphins, in fact, owe much of their great speed to a unique skin which markedly reduces the effect of turbulence against it. From this knowledge has come the recent development of a diaphragm-damping fluid surface which has real potential not only for underwater high-speed bodies, such as submarines, torpedoes and underwater missiles, but for any vehicle where fast-moving gases or fluids may cause drag.[3]

The implications of this knowledge for satellites near Earth or for reentering spacecraft are obvious.

Sometimes a reverse twist in reasoning by a speculative mind will result in enormous practical utility.

In Cambridge, Mass., a sanitary engineer teaching at the Massachusetts Institute of Technology began to wonder about the principles of adhesion—why things stick to each other. Do they only stick together because some sticky substance is holding them, or are there other reasons? "If a person is sick," he asked himself, "is it because a cause of sickness is present or because a cause of health is absent? We now know that in infectious diseases the first alternative is true; the patient is ill because he harbors pathogenic germs. The opposite case prevails in deficiency diseases, where necessary vitamins are absent from food and illness is brought about by this absence. To which of the classes does adhesion belong? When we cannot produce a dependable bond, are we dealing with the lack of some adhesive force or with existence of an obstacle to sticking?"

Operating on the theory that adhesion might result not only from the presence of a sticky agent but from the removal of all impediments to sticking, this scientist has now managed to produce strong adhesion between the least sticky of substances—polyethylene plastics. He has done it by studying the molecular structure of polyethylenes and removing all impurities which normally find their way into the manufacture of such material. The next step: "We hope to prepare adhesive joints in which a noble gas acts as an adhesive. Noble gases are the least active substances known to chemistry; if they can adhere, it is clear that no specific forces are needed for adhesiveness."[4]

No great imagination is required to perceive the meaning which this new knowledge, if proved out, will have for our everyday lives—to say nothing of its usefulness in the making of astronautic equipment.

THE ULTIMATE VALUES

In any event, it is apparent that where research is concerned—and especially space research with its broad scale of inquiry—we cannot always see the value of scientific endeavor on the basis of its beginning. We cannot always account for what we have purchased with each research dollar.

The Government stated this proposition when it first undertook to put the space program on a priority basis:

Scientific research has never been amenable to rigorous cost accounting in advance. Nor, for that matter, has exploration of any sort. But if we have learned one lesson, it is that research and exploration have a remarkable way of paying off—quite apart from the fact that they demonstrate that man is alive and insatiably curious. And we all feel richer for knowing what explorers and scientists have learned about the universe in which we live.[5]

In this statement there is political support for what the historian, the anthropologist, the psychologist consider to be established fact—that some innate force in the human being makes him know, whatever his formal beliefs or whatever his unconscious philosophy, that he must progress. Progress is the core of his destiny.

This is a concept which, in connection with space exploration, has been recognized for many years. One of the earliest and most perceptive of the space "buffs" stated it before the British Interplanetary Society in 1946 in these words: " * * * our civilization is no more than the sum of all the dreams that earlier ages have brought to fulfillment. And so it must always be, for if men cease to dream, if they turn their backs upon the wonder of the universe, the story of our race will be coming to an end".[6]

Figure 2.

Figure 2.—In the years immediately ahead, the orbiting observatory or the manned satellite will uncover crucial information about the nature of the universe.

STEERING A MIDDLE ROAD

In any endeavor which is as futuristic as space exploration it is not difficult to become lost in the land of the starry-eyed prognosticators. Conversely, it is also easy to find oneself lining up with the debunkers and the champions of the status quo, for their arguments and views give the impression of being hard-headed, sensible.

If one must err in either direction, however, it is probably safer, where space is concerned, to err in the direction of the enthusiasts. This is because (and subsequent parts of this report will show it) the Nation cannot afford not to be in the vanguard of the space explorers.

Events today move with facility and lightning rapidity. Today, more than ever, time is on the side of the expeditious. We can no longer take the risk of giving much support to the scoffers—to that breed of unimaginative souls who thought Robert Fulton was a fool for harnessing a paddlewheel to a boiler, who thought Henry Ford was a fool for putting an internal combustion engine on wheels, who thought Samuel Langley was a fool for designing a contraption to fly through the air.

There are always those who will say it cannot be done. Even in this era of sophisticated flight there have been those who said the sound barrier would never be broken. It was. Others said later that space vehicles would never get through the heat barrier. They have. Now, some say men will never overcome the radiation barrier in space. But we can be sure they will.

It is undoubtedly wise for the layman, in terms of the benefits he can expect from the space program in the foreseeable future, to steer a reasonable course between the two extremes. Yet one cannot help remembering that the secret of taking practical energy from the atom, a secret which the human race had been trying to learn for thousands of years, was accomplished in less than a decade from the moment when men first determined that it was possible to split an atom. It is difficult to forget that even after World War II some of our most respected scientists sold short the idea of developing long-range missiles. Impractical, they said; visionary. But 6 years after the United States went to work seriously on missiles, an operational ICBM with a 9,000-mile range was an accomplished fact.

THE TIME FOR SPACE

All of the glowing predictions being made on behalf of space exploration will not be here tomorrow or the next day. Yet this seems less important than that we recognize the significance of our moment of history.

We may think of that moment as a new age—the age of space and the atom—to follow the historic ages of stone, bronze, and iron. We may think of it in terms of theories, of succeeding from those of Copernicus to those of Newton and thence to Freud and now Einstein. We may think of our time as the time of exploiting the new fourth state of matter: plasma, or the ion. Or we may think of it in terms of revolutions, as passing from the industrial cycle of steam through the railroad-steel cycle, through the electricity-automobile cycle, into the burgeoning technological revolution of today.

However we think of it, it is a dawning period and one which—in its scope and potential—promises to dwarf much of what has gone before. Those who have given careful thought to the matter are convinced that while some caution is in order, the new era is not one to be approached with timidity, inhibited imagination or too much convention. Neither is there any point in trying to hold off the tempo of this oncoming age or, in any other way, to evade it.

Mark Twain once listened to the complaints of an old riverboat pilot who was having trouble making the switch from sail to steam. The old pilot wanted no part of the newfangled steam contraptions. "Maybe so," replied Twain, "but when it's steamboat time, you steam."[7]

Today is space time and man is going to explore it.

Figure 3.

Figure 3.—The versatile Atlas can be used either for launching man into space or to carry a nuclear warhead as far as 9,000 miles.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page