CHAPTER III. CHAINLESS vs. CHAIN.

Previous

The possible changes in the future of cycling involve the shape of the cycle as well as the mode of driving it. Indeed, the mode of applying the power has influenced the shape of the structure more than the shape of the structure has influenced the mode of driving. At present, rear-driving has the field; will front-driving ever return? Possibly. As bearing on this possibility, it may not be amiss to briefly describe some of the most important attempts to make a safe and practical bicycle (in nearly every instance out of the front-driver), without trying to follow exact chronological order.

A BRIEF SKETCH OF THE PRINCIPAL “SAFETY” TYPES.

One of the most peculiar was the “Xtra-ordinary,” or “Xtra,” familiarly dubbed the “Camel.” Taking the high Ordinary, it enlarged the back wheel to 22 inches; then, as its main feature, sloped the front forks back very much in a great “rake,” so that the rider’s weight rested more on the rear, and he was thus much less liable to be pitched forward over the front in a “header,” or a “cropper,” as it was called in England. The cranks being thus out of direct reach, they were driven by a pair of long bent levers, which were hinged by a short arm to the front forks, and came back behind and below the wheel axle, bearing pedals on their ends; this contrivance was effective as to safety, but was heavy and clumsy. Other patterns used the usual “rake,” but had swinging levers attached to the cranks, the idea being that the pedals (and consequently the driving pressure) should always be behind the axle. One of these was American—the “Springfield”—and this drove by levers, bearing pedals behind the axle, but used ratchets, and had no cranks. The “Star,” also American, drove by levers and ratchets, but turned about and had the small wheel forward, being very distinctive. Others had the small wheel first, driving the other by cranks thereon, and worked by long swinging levers hinged to the extreme front of the frame, thus going back to an early contrivance nearly half a century before, and much like some children’s velocipedes of today. One of the queerest of all was the “Otto,” a true bicycle in having only two wheels, yet resembling the tricycle in having those side by side on a long axle; the rider sat between, above and a little behind the axle, swinging freely from it, driving by pedals and chains, and steering somehow with great ease.

In smaller bicycles, then called “safeties” for distinguishing them, the “Pony” was simply small sized, with secondary cranks jointed on the first, so that leg-reach could be obtained, the two cranks being out at full length at the bottom of the stroke and shut over like the blade of a knife in its handle at the top of the stroke. The “Kangaroo” type, which had for a time a great run, had their front forks prolonged down, so as to carry pedals and cranks, working on the axle by sprockets, and “gearing up.” The “Facile”—which was the pioneer of small-sized bicycles in America, also had its front forks prolonged, but curved well forward; to the ends of these were hinged levers which came well behind and below the axle, having pedals on the ends, and being attached by connecting-rods to very short cranks, thus working much like the tread of the common foot lathe; it was extremely safe, but was geared “level,” and therefore was not speedy, requiring rapid though short movements of the foot. It was afterward “geared up” so as to be faster, but was gradually displaced by various patterns of “Geared Ordinary.” These used the familiar rotary action with direct cranks, but employed spur gears—not bevel-gears as stated in a recent article in a trade journal. Of this class, one distinctive pattern is the sole present survivor of the front driving type. If reversion ever does bring front driving wheels back on a general or even a comparatively large scale, this seems likely to be the one. Yet prophecy is too unsafe to be hazarded, sweeping though past changes have been.

As the illustrations in this chapter are of such a nature as to require a more detailed description than can be given in a mere line of title, the descriptive matter concerning them is placed together, as follows:

The original Humber—meaning by “original” merely the first bicycle of the rear-driving type produced by the Humber factory—is interesting as showing the beginnings of the “diamond” frame. The steering head was as remarkably long as it afterward became short, but if the fork had been carried forward in a curve instead of dropping straight down, the wheel base would have been longer and the general outline more like the construction of today.

The Golden Era is reproduced as a curiosity in frames and as suggesting—since to illustrate them all would require too much space and would not have sufficient interest—the number and variety of frame shapes which have resulted in the familiar one of the present, although it would be rash to affirm that finality in frames is reached even now.

FIRST HUMBER MODEL.

The Victor of 1887 was the first of the type made in America. There may be some question whether a bicycle with a drop frame was not produced in Washington somewhat earlier, but it was not done commercially. The wheels of the Victor were 30-inch, with a ? solid tire on the rear and a ¾ tire on the front. It was made in only one size. The gear was 54; the weight was not stated; the price was $140. It had ball bearings all over, including the steering, which was a “socket,” and was in both these particulars rather advanced at that time. Its chief peculiarity was that the entire front forks consisted of two pairs of curved springs, attached to the frame by ingenious rocking joints, which at first had cone bearings, but were changed to balls in the next year. As more elastic tires came in, this peculiar fork went out, the pattern being made in both ways for several years; but the Overman Company is entitled to the credit of having been the first American concern to make the now prevailing type of bicycle, and of having also improved upon it as they found it. The frame shown in the cut, which was a common one up to that date, was changed in the following year to a stronger one of the early “diamond” type.

The Veloce of 1888 was the first rear-driver produced at the Columbia factory, although a pattern of the Kangaroo had been for two years in the company’s line. The Veloce had a 30-inch front wheel and a 31-inch driver, both having ? solid tires. The cranks were of the usual slotted style, giving a throw of 5 to 6½ inches. The steering was cone, 4½ inches between centres. The handlebar was hollow, 28 inches long. One size only was built, geared to 52, weighing 51 pounds, and selling at $135. A peculiarity of the construction was that a single curved cross-tube intersecting the straight “backbone” or “perch” formed the support for the crank-axle and sprockets, and then was carried up over the wheel, where it did duty as a mud-guard. The wheels had 40 and 36 spokes, which were “direct,” as against the tangent which the Victor people had been using and insisting upon for several years. Referring to the direct spoke, the Columbia catalogue of this year (1888) says:

“We have shown the desirability of this construction too often to make a repetition necessary, particularly in the case of a small-wheel machine for use at all times and places. It is a matter of satisfaction to us to observe a growing recognition of our arguments on this point, even in England, where, if in any part of the world, the roads are suited to full tangent spokes.”

This shows how easily the best judges and prophets may sometimes be mistaken.

THE GOLDEN ERA.

The Defender Midget is an (page 34) illustration of all that is extremely advanced and radical in bicycle construction for 1898. The steering head is of the shortest, only 4 inches in length. The frame is 22-inch, with flush joints and stamped internal connections. The top tube is horizontal. The crank-hanger has a 4-inch drop; the cranks are 7 inches, with a 4½-inch tread, these three particulars being extreme. The cranks are the Fauber patent, a single piece forming both cranks and axle, which are passed into place through the large opening in bracket before putting in the bearings. The chain is adjusted at the bracket by an eccentric, instead of at the wheel as usual. The rear forks are a continuous piece of D-tubing, of ? section tapered to ¾. They are joined to the crank bracket by a single large oval stem, thus allowing clearance, without cranking or offsetting the fork, for the very large front Fauber “star” sprocket of 32 teeth. The rear sprocket has 12 teeth, thus making a gear of only 74 2/3, notwithstanding the large size of the front one. Front forks are of tapered D-tubing in one piece, with an arched crown, and forks and crown are both nickeled. The wheels have Thor patent hubs, and the saddle post is fastened with the Thor expander, the saddle, of course, being a Brown. The handlebar is extremely wide and light, made of octagon tubing on the Schinneer patent, and the fastening is internal. The chain is 6 per cent. nickel steel in the block, and tool steel in the side-plates. Rims are laminated, and tires are light road Palmer.

This model is very striking in appearance, and includes the patented specialties of half a dozen makers of component parts, thus indicating clearly that it is the product of a small maker. This remark, however, is not made in any derogatory sense.

THE VICTOR—FIRST AMERICAN SAFETY—1887.

From the forward thrust on the old “boneshaker” velocipede of 1868, which was compelled by its structure, the cyclist next went to the nearly downward action on the “high ordinary” of 1878; this change was made to get speed by a larger wheel, and he had to sit near its centre in order to reach the pedal. The Facile, a lever-driving “safety,” which soon followed, had as its distinctive feature the most vertical position of driving ever obtained, and its maker was naturally very strenuous for that position, contending that on the Facile the rider was always and all the time “over his work,” with his pedal directly under him, where the Ordinary rider always tried to get but could not. This was strictly true, and although the same maker, under changed trade conditions, has since argued for a position considerably “behind the work,” this is not against his sincerity, for really there is considerable to be said on both sides.

It will readily be seen that the lever favors the “over-the-work” position, because the pedal can thus be placed at a distance from the driven axle; but rotary pedaling, as against the peculiar stroke of a lever, seems now fixed, if anything can be affirmed to be. With any type using two equal-sized wheels and rotary action, the rider must sit over the back wheel (as on the abandoned “Broncho” of a few years ago) or else substantially as on the present type. Then he must have some means of carrying his power back to the axle; what shall that means be? The foregoing analysis is partly to lead up to the issue between chain and no-chain, and partly to suggest how many and how important considerations are involved in the relative position of the saddle in the whole structure.

MODES OF POWER TRANSMISSION.

The crank-axle, and crank-bracket, the “heart” of the bicycle, is now the place where the power is first exerted, and from this it must be transmitted to the wheel. There are a number of possible methods of transmission, thus:

1. A leather belt.

2. A metallic band with holes to engage projections on the sprockets, or provided with projections to enter holes therein.

3. A chain.

4. A wire rope, with or without projections.

5. Clutch or ratchet action, at one or both ends, operated by a lever.

6. Lever and crank, with or without an oscillating fulcrum.

7. A connecting-shaft, carrying bevel gears at each end.

8. A connecting-shaft, working pin-and-roller gears.

9. A connecting-shaft, with universal joints.

10. A row of spur gears to close the gap between the two axles.

11. Cranks and connecting-rods, working double, locomotive-fashion.

12. Friction wheels, with or without spur gears.

13. Pneumatic or hydraulic transmission, with some choice of fluids.

14. A combination of cams and rollers.

15. Balls working in spiral grooves on axles.

This does not exhaust the list of theoretical possibilities, nor mention all the combinations which could be formed. A sufficiently wild inventor could fix up a contrivance, beginning at one axle and ultimately reaching the other, which involved the whole list, and he might then be confident that he had met the long-felt want.

Nos. 2 to 4 are modifications of No. 1; No. 5 involves giving up back-pedalling; No. 9 cannot “gear up;” Nos. 12 to 15 are not practical. And the whole list—just as the large number of “mechanical powers” named in old text-books are really only two—“boils down” to five: the endless belt, the spur gear, the shaft with bevel or pin-roller gears, cranks and connecting-rods, and the lever. The fourth of these appears on only one make thus far; it involves practical difficulties, is not strictly chainless, and hardly need be considered as a rival to the chain. The lever is not seriously contesting now. The spur gear is in market; yet it is offered in only two or three patterns now, one of them the Hildick, which has distinctive claims of its own—and so it can be passed. The third of these just named is the contestant of the old chain, against which it has brought an action for ejectment, to be tried, and probably sustained or dismissed, in this year 1898.

THE STRESS OF THE CHAIN-PULL.

It is true, as alleged by the plaintiff in this action, that a severe strain is put by the driving on the frame of a chain-driver, increasing enormously as the load or resistance increases. It is true that by the laws of materials the yield is always in the direction of least resistance; this was understood by Autocrat Holmes’s old deacon, who reasoned, when about to construct his “one-hoss shay,” that “it’s mighty plain thet the weakes’ place must stan’ the strain” and if that does not stand the whole construction goes. The trouble with the bicycle frame is that it is a triangle, and (as shown in the small sketch) the line of draught is not parallel to the line of resistance. Suppose the resistance under trying conditions of grade and road is represented by a weight of 100; then it’s pedal, or crank, or axle or sprocket, or any piece in chain, or the spokes in the back wheel, or the frame itself, had a strength below 100, instead of the bicycle’s advancing along the road the rider’s power would expend itself in breaking or bending such weak part. The pull is a one-sided pull, necessarily tending to drag the frame around toward the side where the chain is, and frames have not always been made strong enough to resist entirely. Ten years ago, when the present type of bicycle was beginning to come in, a dealer whose interests were opposed made the most of this objection of side-drag, quoting the recent admissions of several English makers, thus:

DIAGRAM SHOWING ONE-SIDED CHAIN PULL.

“There is a great deal more strain between the two chain wheels than is generally understood, and experience has proved the necessity of a direct and rigid connection between these points.” (Starley & Sutton of Coventry, 1888 catalogue.)

“We would draw the reader’s special attention to our pattern for this year, as every one who has had experience in this type of machine knows that the bearings are of the utmost importance, the wear and tear being so much greater than on an ordinary bicycle. This has caused us to discard the old pattern pin-and-cone ball bearing, in which the cones and cups are continually going wrong, owing to the smallness of the bearing surfaces and the enormous strain upon them. As in all pin-and-cone ball bearings, the cone wears flat on the chain side, but in the bearings we have introduced it is impossible to do so. They are the same as fitted to the front wheel of our bicycles.” (Rudge Cycle Company of Coventry, 1888 catalogue.)

This was quite true. Bearings have since been modified to meet the case, and frames have been strengthened; yet a light frame may waste power, under trying conditions, by springing out of line without getting a permanent bend, and something more can probably be done in frame strengthening.

The reader will observe, on referring again to the cuts of the first Columbia, where it happens to show more distinctly, that the frame is substantially two tubes crossing at right angles. Construction began in this manner in England, and the reason was that makers followed the “ordinary,” to which they were accustomed. They took the familiar curved backbone, and made it straight, attaching it to the wheel in the old way by mortise and tenon, with a bolt passed through, as the cut clearly shows. They did not foresee the chain-pull, and (strange as it seems) actually did not at first always put on even the single tie-rod used in the Victor; later, a second tie-rod was carried to the rear wheel, thus making a truss, and then a second pair were placed above the backbone, thus further approaching the diamond. Now it was this identical construction of frame, as shown in the Columbia most distinctly, which caused Starley & Sutton (as just quoted above) to say that “there is a great deal more strain between the two chain wheels than is generally understood, and experience has proved the necessity of a direct and rigid connection between these points.” This strain had not only not been “generally understood,” but had apparently hardly been thought of at all. Yet the direct fork which those old Coventry makers called for was soon supplied, and the moral for which we relate this bit of history is the fact that the present frame of the chain-driver and the chain itself are the result of a long evolution process, in which every step has been suggested and proved by practical experience.

DEMANDS UPON CHAINLESS CONSTRUCTION.

From this tendency to draw the two axles toward each other—which has to be resisted by the frame before there can be any effect to revolve the wheel—the chainless is wholly free. In so much as this, its case is proved at once. Yet, if it would be frank, it must repeat the common remark: “I have troubles of my own.” Making bevel-gears is a detail and may be waived; but when they are finished, other problems arise. These problems cannot be better stated than in the five sentences following, which come officially from the chief advocate of these gears and should be carefully considered:

“The maker must place them in the machine with perfect exactness. The front and the rear axle, with their gear attachments, should lie precisely in the same plane and exactly parallel with each other. Any failure to do this will result in binding, cramp, strain and unsatisfactory work. Not only must these conditions exist in the wheel as it comes from the workman’s hands, but they must be maintained under load and shock, under the severest uses. The frame construction must be so rigid that there will be no spring or yield under any strain.”

This is a statement of the contestant’s own advocate, who adds that the extraordinary weight of the old “League” chainless (seventy-five pounds at first, the reader will remember) was unavoidable because the makers had no way of getting frame stiffness except by putting in metal; he then argues that nickel steel now supplies the strength without sacrifice of lightness. Another advocate—an over-zealous one whom it is difficult to take seriously—declares that this make of chainless will never get out of line, and that if it ever does the running will remain unaffected. The jointed shaft of the Bayvelgere is designed to meet just this contingency. We do not predict, save to say that if the frame of any chainless with a rigid connecting shaft ever does get out of line there will be serious trouble necessarily. Make the “if” as emphatic as anybody pleases, and consider the danger of springing the frame however remote; the chance of this occurring, under some sort of conditions and usage, is one which the chainless, especially those of the bevel class, must encounter.

FIRST COLUMBIA REAR-DRIVER—1888.

As to any kind of construction, whether of frame or of driving parts, there is no trouble when spinning on a stand without a load; the question begins when power is put upon it against a heavy resistance in actual use. A maker who has criticised the bevel chainless more severely than any one else insists that bevel-gears are especially wasteful by friction. In his factory, he says, a power drill working with such gears will make only an inch hole through a certain piece of metal, while a similar drill without the bevels and run from the same shaft will make a 1?-inch hole through the same metal. But this is not entirely conclusive, and the appeal to general practice in machine shops does not count very much. It could just as well be taken against the chain, and against the spur gear, for the fact is that no gear is used there except when necessary. Whenever the shafts are a considerable distance apart the belt is used, which is simple, cheap and effective, developing a surprising amount of “bite” even on quite smooth surfaces. When the shafts are close together the spur gear is used, nothing else being available. When there is a distance and no slippage can be permitted the chain is the thing. When power must turn a corner it is a choice between belt or bevel gears. But to say that a thing is not good on a bicycle because it is not used to drive machinery in shops is poor reasoning. We might as well say that ball bearings are not good because they are never used on locomotives.

THE PROBLEM OF “END-THRUST.”

The objection of “end-thrust” is raised against the bevel-driver. If the reader will look at a cut showing the shaft in position with the two axles, he will understand that the large beveled wheel on the crank axle tries to push the pinion and shaft backward, so that it may free itself and turn as the rider is forcing it to do. This backward pressure is because the face of the tooth is sloping, and before the load can be moved this pressure back must be resisted solidly somewhere. So (it is said) the rear pinion of the shaft is liable to be forced hard against the one on the hub, thus causing friction and possibly “bind,” especially on hills and bad roads. But this peculiar action between the interacting teeth at the crank shaft is necessarily duplicated at the other end of the shaft, so that the backward thrust at the front is met by a forward thrust at the rear, the two thrusts thus counteracting each other.

It should be said here that the pin-roller gear, already described, as used on the Monarch and others, is free from any possible objection of “end-thrust,” as there is no tendency to shove the shaft either backward or forward.

THE PROBLEM OF EFFECT UPON BEARINGS.

A question arises as to the effect upon the bearings and the balls in them when any sort of shaft is used for chainless driving. Looking again at the cut of the shaft and adjacent parts, the reader will see that power applied on the pedal tends to roll the pinion directly away from the large gear, because if the pinion could roll clear away the axle would then be left free to turn; similarly, pressure at the back end tends to push apart those two pinions also. This pressure to separate comes upon the balls and the bearing surfaces, there being nothing else to take it. It is true that the draw of the chain, already explained, is thrown at once directly on the balls and the bearing surfaces, and that no large amount of trouble has been caused thereby, in all the last six years of use of chain driving. But it seems well settled that the old “League” bevel chainless did develop an experience of breaking balls and cups and cones, and it is claimed that bevel-gears produce a peculiar twisting strain on bearings. How much there is in this claim, and what precautions have been or can be taken by makers to meet the difficulty, time will show. Yet it should be said that the pin-roller gear, while free from any exposure to “end-thrust,” must take its chances with the other chainless models which have connecting shafts in respect to “side-thrust” on the bearings.

EFFECT OF “SIDE-THRUST” UPON THE FRAME.

A question arises as to the effect of “side-thrust” as distinguished from “end-thrust” upon the frame (as well as the bearings) in chainless driving. This “side-thrust” is under new conditions and in a somewhat different way; but it is not a new thing—it exists in chain driving, because it always exists. When power is applied to any structure consisting of several movable parts put together, the part to which the impulse is directly applied pushes first on the parts next to it; they pass the push to other parts, and so along the line (as if the several parts were links in a chain) until at last, all the parts having refused to either break or be shoved out of place, the load aimed at is moved. In case of the bicycle this load is the moving of the structure and its rider along the ground. If any of the parts involved could break more easily than the movement along the ground is accomplished that breakage would occur, instead of the movement intended. This is only one example of the law, already stated, that the yield is always in the direction, or at the place, of least resistance—the weakest thing gives up.

It was said just now that the pinion on the forward end of the shaft tries to roll away from the gear wheel which pushes it; the pinions at the rear also try to roll away from each other. Thus they put a side pressure on their bearings, as stated, but the same pressure comes on the frame which holds the bearings. At the crank axle this tends to crowd the fork sides toward or from each other, according as the teeth on the large gear face in one direction or the other; at the rear the tendency is to separate the forks. This tendency is to simultaneously crowd upon the balls, to spread open the forks and to press the teeth of the gears into closer contact.

Since the roller-geared and the bevel-toothed types must meet the same pressure on the bearings, they are alike in this pressure on the frames. As already remarked, each of them escapes entirely the heavy pressure which the pull of the chain puts on the axles and their bearings; in place of this they get other and different strains, as just described.

Observe that we do not say these strains will not be successfully resisted—that would be prediction. Some further strengthening of the frame might perhaps be had, and in fact the doubling of the fork on the chain side of chain-drivers, to get additional stiffness, is not unknown in present English practice. It might even be suggested as a fair question, whether a new or somewhat modified form of frame ought not to have been devised for chainless driving instead of applying it to a form never intended for it.

THE QUESTION OF THE GEAR TEETH.

The endurance of the gear teeth is also a question to be decided by use. It has been said that “the teeth are so designed as to be relatively stronger than the cranks and under excessive strain the cranks will break first;” also that “the individual parts are stronger than the elementary parts of the chain.” We have seen cranks tested, in regular shop routine, by samples taken out of each small lot, under a measured load of 1,000 pounds, and have seen them show their quality by returning to the straight line when the load was removed. The cross-section of an average crank is three to five times that of a bevel or radial tooth. In practice, cranks do not break; some other part, less strong, breaks when something must, and so the statement that the bevel tooth is stronger than the crank which is to be measured against it under load seems rather too forcible. The comparatively slight tooth must bear the same strain which comes on other parts and the very small though real bit of elasticity or “give” which the chain possesses, by virtue of being made up of many parts joined together, is lacking in gears of any kind; the strain on those is “solid” and unrelieved. The fact that breakage of a sprocket (unless by some collision or extraordinary fall) is a mishap almost unheard of does not insure the gear tooth in the least—the two are not the same case. The sprocket tooth is very thick in the direction of the strain, and the pull of the chain comes on not less than five teeth at once on the rear sprocket and twice as many on the front, thus dividing the load; the gear teeth, on the contrary, are thin, and the strain is concentrated on not more than two at a time, practically upon one. Yet we must distinguish here the bevel and the spur-gear tooth from the peculiar teeth on the pin-roller gear; the latter are so thick that no doubt of their strength need be raised.

DEFENDER MIDGET—1898.

The last paragraph is not to affirm or to imply that the teeth will not prove equal to their task. But such gearing has never been used on cycles; the bevel wheels of the tricycle “balance-gear” were larger and were not common enough to constitute an exception. Spur gears have been successfully used for many years on the Crypto gear already described, but four pinions are employed on that instead of one, for the express purpose of dividing the strain. So it is fair and well to note that when we resort to gearing as an escape from the chain we are going from the long-tried to the untried.

Here it may be in point to quote from the current advertisement of one of the oldest concerns in the English trade, the Centaur Company of Coventry:

“The pioneers in the cycle trade can afford to view with equanimity the appearance of the faddist who, from time to time, tries to resuscitate some obsolete and exploded notion which, in the early days, has already been thoroughly tested and abandoned. The Chainless Safety, with which we have been threatened during the past two years, is an example of this. Bevel-gears, spur-gears, roller-gears, rod-and-piston-gears, intermediate wheels, and every conceivable form of gearing were experimented with by ourselves and many of the older makers in the early ’80’s, for the purpose of dispensing with the chain. If, as a medium for transmitting power, they were then found to be inferior to the crude and imperfect chain available at that period, it must be manifest to everyone who is familiar with cycle construction that, with the perfect chain of today, the comparison must be still less favorable to the chainless methods.”

This is not quoted as endorsing it, nor do we regard the experimenting mentioned as conclusive; the point lies in the last sentence. For while it is true that the cutting of bevel or radial gears has been so much improved that the results of trials long ago do not signify (as is frankly admitted by not over-friendly English trade journals in commenting on the Columbia), it is equally true that the chain also is greatly improved.

THE CHARGES AGAINST THE CHAIN.

In the action for ejectment, which we have supposed the chainless to be bringing, the worst counts which can be brought against the chain are that it is “lubricated” with grit, being left exposed; that it clogs with mud and is a fair-weather device only; that it is very dirty and troublesome to keep clean, and that chain and sprockets wear rapidly. All this is thus far quite true, and yet quite answerable. The chain very rarely breaks, and whenever it does the reason is that it has been so neglected that the joints could no longer bend. A great deal is said about “backlash,” or the back-and-forth looseness of moving parts between themselves. A little slack is necessary in a chain, and if it is excessive that is by the rider’s fault, as it is a matter entirely within his control. If the rider “jerks up” the slack of his chain when passing over the centre that only shows that he does not pedal properly, or perhaps that his chain needs a little tightening. If a chain does break, chain parts are fast becoming staple goods, procurable anywhere almost as readily as nails; a temporary repair on the road is not difficult, and there are also spare pieces which can be carried in a vest-pocket and applied almost without tools. On the other hand, repair on a chainless cannot be made on the road, and will in any case be very much greater, in cost and trouble, than any which are called for on a chain or a sprocket.

Every mechanic knows that a shaft “out of line” cannot operate properly, if at all, on any construction, from an ocean liner down to delicate machinery for watchmaking. A chainless bicycle—although this requirement is not quite so severe on those with the roller gear, since that has a semi-flexibility—must have its shaft and gears laid in exactly right at first, and then they must stay so. The chain-driver is the opposite in this respect. The frame may be considerably sprung out of line, and the front sprocket may even have quite a twist, and yet the driving not be noticeably affected. The reason is that the chain, instead of being rigid and unyielding, is jointed and can bend, accommodating itself to any little irregularity. This is the reason why bicycles have been able to run, even when not in very good condition, all these years, while frames have been undergoing tests and have been having their weak places strengthened. It is said that “the weak part of a chain-and-sprocket bicycle is the chain,” and that the chain is “the one serious source of danger that every bicycler realizes.” Yet it is the last thing about which the average rider troubles himself, either to be anxious for or to take care of, and dealers and repairmen will almost unanimously testify that the chain and the sprockets have figured less frequently and less importantly in their repair shop than any other part of the bicycle.

GEAR CASES AND IMPROVEMENTS IN CHAINS.

English makers think Americans slow and dull in not using a gear case, which is a regular part of the cycle with them; but the difference in climate accounts for that—it has not been thought needful here. The strongest point for the chainless (those with spur gear excepted) is the ease and neatness of inclosing its driving parts; yet the case to inclose the chain is coming, and when the chain is covered the objections to it above noted and admitted are substantially removed. There is little experience of the case here as yet, but we can testify to an instance in which the case was taken off for examination, after some months’ use, and the oil and graphite were found apparently as fresh and unimpaired as when applied.

As further defence against the ejectment action it should be noted that comparatively little attention has been given to improvement in sprockets and chains, but that now these parts are no longer neglected. The quality, accuracy and finish of chains have been greatly improved of late years, and this is especially noticeable on the 1898 product. New patterns of chain are coming into market, and new shapes of sprocket tooth as well. These will be considered later in their place; we can only say now that these changes are not mere alterations for “talking-points,” but are veritable improvements. Of course, the chainless movement stimulates and requires these improvements, and will be met and opposed by them.

THE OUTLOOK FOR THE CHAINLESS.

When we come to consider the trade outlook for the chainless, and the trade outlook as affected by the chainless (for these are different things and in some degree opposed to each other) the first point observable is that every maker of a chainless, with the exception of the Bayvelgere people, proposes to market chain wheels as formerly; even the powerful concern which has started the chainless movement and has carried enthusiastic praise of its new product so far as to dispraise chain drivers, by natural implication and almost by direct statement, is preparing to market the chain wheel just as before. It is also a peculiar feature of the situation that only one or two of the other makers who are bringing out the chainless have much to say for it; on the contrary, most of them seem to regard it as a doubtful experiment, and two have openly pronounced against it, one of them announcing that “notwithstanding these stubborn facts, however, we have decided to meet the demand on the part of some riders for chainless bicycles, although we do not recommend them.”

The first price announced, $125, seemed to be prohibitory of any large sale for the chainless in 1898 as against the chain drivers at current market values. But the later announcement of models at $100, at $75, and even at $60, puts a different face upon that, and the chainless will make its way as it can, in the market, and will find its place according to its comparative merits or demerits.

EFFECT OF THE CHAINLESS UPON THE CYCLE TRADE.

The probable effect of the newcomer upon the trade in general is a puzzling factor in the outlook. “The chainless is an inspiration; it is a piece of folly; it will induce people to buy; it will hold people back from buying; it is and has been a trade disturber; it is just the tonic the trade needs”—one can take his choice of these opinions, for it is a matter of the point of view. Perhaps the real truth and the best course, as usual, lie somewhere between the extremes. This seems the more likely to be so, because the bicycle has been suffering from extremes in the form of a large overdose of “boom;” it might be more euphemistically put by saying that the industry has been fostered and stimulated too fast. The “pace” of competition has been too hot, and the result is a part of the evolution through which this marvellous product of skill must pass.

EVOLUTION IN THE TRADE.

Evolution works not only in the cycle itself, but in the methods of production and sale, in the ranks of the producers themselves, and in all included in the term “the trade.” The swift rise of the bicycle as an article of merchandising importance, together with sensational attempts by uninformed press writers to expose the alleged exorbitant profits, has produced a natural effect within the last three years. To make a bicycle for $20 and sell it for $100 was so sure and easy a method of amassing a fortune within, say, five years’ time, that the imagination of our ever-quick Americans was fired.

It is not necessary just now to point out the defects of this picture, sketched and held up; the most serious defect was that it was untrue to fact. There was, however, a rush to get into “the swim” while there was time. People without capital, without experience, without mechanical training, without even any knowledge of the materials of which bicycles are constructed, hastened to advertise themselves as bicycle makers, and for a full year the news columns went on announcing the building of new factories. Thus the bargain counter got its supplies, and the natural reaction followed, the news columns soon having items of quite another character.

It must not be supposed, however, that recent reductions in price mean simply relinquishment of former profit margins, whether those were large or small; some of the decline in price does mean a lower rate of profit, partly atoned for by larger sales, but a great deal is covered by economies in handling and marketing, and notably by reduced costs of production, which are made possible by various means as above suggested, one of the chief of these being automatic machinery. The disturbed condition of the bicycle market has been adjusting itself and will continue to do so—all the sooner and better for all concerned if volunteer assistants will remember that “it is better not to know so much than to know so much that isn’t so.”


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page