CHAPTER IEvolution Before Darwin Ever since men have been able to think they must have puzzled out for themselves some way of accounting for their own beginnings. Every savage tribe with whom we have any intimate acquaintance has some story that accounts for the origin of the tribe at least, and often for the beginning of the world. These stories are handed down from generation to generation and are scarcely questioned in the thought of most men. In early Greece there was a succession of men whom the world calls philosophers. These men thought earnestly and deeply on all kinds of questions. Their method was not our method. The plan of making a long series of observations, before coming to any conclusion, was not the habit of their minds. They reasoned out on general principles what seemed to them must have been the origin of the world. It is not strange that among these should come, now and then, some one who in some Among the earliest of these was Anaximander, who lived 600 years before Christ. He thought that the earth was at first a fluid. Gradually this fluid began to dry and grow thicker, and here and there, where it thickened most, dry land appeared. When this dry land had become firm enough to serve as his home, man came up from the water in the form of a fish. Slowly and gradually the fish, struggling about on the land, gained for himself the limbs and members he needed for his new situation and developed into a man. After him other animals came up in much the same fashion, then the plants, until the whole world was clothed with its present inhabitants. One hundred and fifty years later Empedocles announced a new thought. He said that in the beginnings there were all sorts of strange, incomplete, and misjointed monsters which swarmed upon the earth, having sprung up out of the earth itself. Each was a chaos of the limbs which afterward were to belong to other animals which needed them more. Slowly and gradually an interchanging came about by which appropriate limbs fastened themselves to the proper animals. The last of these misjointed creatures is the Then came Anaxagoras, who was the first to believe that there was intelligent design back of the creation of animals and of plants. He thought there had originally been a slime in which were the germs of all the later plants, animals, and minerals, mixed in a chaos. Slowly order arose. Out of the mixture settled first the minerals forming the earth, with the air floating above it, and above the air was the ether. Out of the air the germs of plants settled upon the earth, and vegetation covered the mineral floor. Then from the ether came the germs of animals and of men. These settled among the plants and sprang up into the animals of the world, as well as the people. The greatest scientific thinker of early Greece was Aristotle. He had lived by the seashore and knew better than any other man of his times the exquisite seaweeds and the still more beautiful marine animals. He was the first to think of them as a linked series, the higher developing out of the lower under the Just a little before the time of Christ the Latin poet, Lucretius, wrote a poem on "The Nature of Things." Here he describes how in the early years the beginnings of things in small, disjointed fashion moved about among each other at first in utter confusion, each trying itself with the other. After many trials the proper members came together. When they had been thus placed the warmth of the sun shining down upon the earth helped the earth to reproduce the same sort of creatures. So living things came up and flourished. The poem expresses many beautiful ideas, but the underlying conceptions lack the unity and grandeur that marked Aristotle's work, which later was the potent influence in shaping men's minds. It died out after a while, only to awake in the Re Among the Jews and early Christians the stately and beautiful account in Genesis sufficed for all the needs of minds fully occupied with other questions. With the growth of philosophy among Christian minds again came the need of a satisfactory solution. St. Augustine was probably the greatest of the so-called "Fathers" of the church. His mind was eminently philosophical, and he was learned in the writings of the older Greeks. He believed the language of Genesis to mean that in the beginning God planted in chaos the seed that afterward sprang up into the heavens and the earth. He further says that the six days of creation were not days of time, but a series of causes, and that, in the order described as these six days, God planted in chaos the various beginnings of things. These in the fullness of time sprang up into the world as we know it now. The problem was not a question about which the church cared to trouble itself, and with the oncoming of the Dark Ages the whole matter dropped nearly out of the thoughts of men. When the times began to lighten we find the schoolmen, among the greatest of whom was Thomas Nearly four hundred years later, when Europe had finally awakened out of the deep and refreshing sleep in which it had fortunately forgotten much of the past, a new era dawned and modern thought began. Immediately men commenced to busy their minds with broader problems than they had been discussing since the time of the Greek philosophers. The hand of tradition, however, was heavy on them still. They dreaded to run counter to authority, and did not dare think unrestrainedly. Descartes shows us how we can understand things better if we will imagine a few principles by which it will be easy to account for things as they are. Then he carefully elaborates these principles as they occur to him; but he has no sooner done so than he takes care to add, "Of course, we know the earth was not made in this way." By the middle of the eighteenth century men had begun to think more fearlessly. The great Emanuel Kant wrote in his younger and less timid years, "The General History of Nature and Theory of the Heavens." The great Newton had by his law of gravitation brought order into the heavens. Kant looked longingly for a greater Newton, who should find a similar unity in the animal world. He saw the wonderful likenesses between animals that the anatomist, Buffon, had recently pointed out. He believed there must somehow be blood relationship between all animals. He tried hard to conceive of some underlying natural cause by which all could have come about. As he grew older and his mind became more cautious he came to think the matter deeper than the human mind could ever fathom. He gave up the hope and believed the problem of animal origin and derivation would forever remain insoluble. He feared If we ever wonder why it took so long before the thought of evolution should have fully dawned upon the world, the answer is not far to seek. No student of Natural History in ancient or medieval times had the faintest conception of the enormous number of animals and of plants in the world. The old Greek or Roman student of Natural History gives no evidence of knowing more than a few hundred animals. Men have named to-day, with systematic Latin names, hundreds of animals for every one that Pliny ever knew, and he knew more than any other man of early times of whom record has come to us. In early days men who traveled into foreign countries brought back accounts of what they saw. The whole Natural History of ancient times was filled with the most absurd and ludicrous stories of all sorts of things to be seen in distant lands. Sir John Mandeville tells tales almost as imaginative and quite as amusing as those attributed to Baron Munchausen. Upon the great awakening of the fifteenth century, with its new study and its wide-ranging travel, an entire change came over the human mind. Men who journeyed into far countries brought back with them not only accounts of what they saw, but, so far as might be, the things themselves. Collections of plants About this time we find in the writings of Buffon, the French naturalist, many indications of an idea approaching our modern conceptions of evolution. He felt sure the pig could not have been a special crea A little later, in England, Erasmus Darwin, the grandfather of Charles Darwin, who was subsequently to establish the evolution theory, wrote a long and elaborate poem called the "Temple of Nature." In this we find a remarkable prevision of many of the principles which were afterward to be warmly advocated and disputed during the growth of the idea of evolution. "Hence without parents by spontaneous growth, Rise the first specks of animated life. * * * * * * * Thus as successive generations bloom New powers acquire and larger limbs assume." The beginning of the nineteenth century gives us the first really great contribution to the idea of evolution. Under more favorable surroundings, this idea would have budded and become the parent stock of our modern theories. The chill frosts of adverse criticism by those in authority in science nipped the budding idea and so set it back that only of late years have men come to realize its strength and power. The Chevalier de Lamarck, serving in Monaco, was attracted by its rich flora to the study of botany. Coming later to Paris, he became acquainted with Buffon and was led by him to publish a Flora of France, using the LinnÆan system of classification. He was appointed to the chair of zoÖlogy in the Jardin des Plantes, and was given especial charge of the invertebrate animals, comprising all the members of the animal kingdom except those with backbones. After seventeen years of work over these forms, dur Lamarck's conception of the cause of progress was somewhat as follows: The desire for any action on the part of an animal leads to efforts to accomplish that desire. From these efforts came gradually the organ and its accompanying powers. With every exercise of these powers the organ and its corresponding function became better developed. Every gain either in function or in organ was transmitted to those of the next generation, who were thus enabled to start where their parents left off. The general environment constantly gave the stimuli that led to the adaptive changes. American zoÖlogists have been especially inclined toward Lamarck's ideas. Until Weissmann startled the scientific world with his sharp denial of the possibility of transmitting to offspring any growth ac The blighting setback these views suffered came from the criticisms of Baron Cuvier. This genuinely remarkable man had built up the study of comparative anatomy. To him students flocked from all sides. Among these one of the most brilliant was Agassiz, the Swiss naturalist, who later came to this country, filled with Cuvier's ideas. This great teacher believed that species are fixed. He knew better than any man of his times the wonderful similarity in structure between animals of a given class. He attributed this not to any real blood relationship between the animals. They were alike because they had been made by the same Creator. This great Artificer worked along four main lines, and hence animals could be divided into four groups. Many who have studied text books on zoÖlogy written in this country by Agassiz and his followers will remember the four classes—Radiates, Articulates, Mollusks, and Vertebrates. Agassiz was such a wonderful teacher and so genial and so lovable a man that his opposition to evolution held back the advance of the Darwinian idea in America as Cuvier's influence A little later the great poet, Goethe, turned his attention to the problem of evolution, giving an interesting account of the metamorphoses of plants. He declared, also, that the human skull is a continuation of the backbones of the neck, and that these bones have been transformed into the present skull. But his great genius as a poet drew his attention into other fields. Haeckel points out that if Goethe had known Lamarck's work his genius would have gained for the "Philosophie ZoÖlogique" the interest and respect of the reading world. But Cuvier laughed it out of court, and only in comparatively modern times, since Darwin's work has set the world thinking anew, is Lamarck's career recognized at its true value. Lamarck should have been the founder of the evolution theory. But the time was not quite ripe, and it remained for Charles Darwin to announce his idea, sustained and fortified by years of careful observation and thoughtful reflection. CHAPTER IIDarwin and Wallace We have seen in the last chapter that whenever men have actively thought they have attempted to explain the origin of plants and animals as well as of themselves. No one who wrote previous to the time of Charles Darwin had expressed any idea concerning this matter with force enough to convince any large portion of the thinking world. If Lamarck had fallen on better times, if the great Cuvier had not laughed him to scorn, if Goethe had found him out and made him known to the world, evolution might have come into its own sooner. None of these conditions arose, and it remained for Charles Darwin to give to the world in clear and cogent form the thought of evolution. He gathered so much material before he expressed his opinions, and looked at the matter from so many sides that, when he published his results, he had foreseen most of the objections which were subsequently to arise in opposition to his announcement. Charles Darwin is recognized to-day as the father of the evolutionary movement. Evolution has taught us to attempt as far as may be to account for man on the basis of his heredity or of his environment. It is interesting to note that both of these factors in Darwin's case were entirely favorable. In the latter part of the eighteenth century Erasmus Darwin had given to the world an astonishing poem in which he anticipated not a little of the thought which his more famous grandson was to make so widely known. Josiah Wedgwood had learned to make for England her most famous pottery, no quality of which was more widely recognized than the sterling patience with which it was made. Erasmus Darwin, with his scientific proclivities, and Josiah Wedgwood, with his sturdy common sense and patient workmanship, united to give Charles Darwin his The British nation, being the greatest commercial nation of the globe, has the greatest need for accurate There is little doubt that this book was one of the most potent factors in determining the bent of Darwin's mind. His entire educational experience had failed to appeal to him. It is fortunate, we now know, that this was the case. If the university course of the time had really seized him it would have made but one more student like hundreds it was turning out each year. For most of us this is the happy event. Now and then comes the rare spirit to whom all of this fails to appeal because he is ready for something better. Such was the spirit of Charles Darwin. He The narrative of this voyage, as subsequently written, describes the islands visited by the Beagle in crossing the Atlantic Ocean. The contrast between the simple and general interest in these islands and the care with which Darwin described the Galapagos and the Keeling Atoll visited later in the voyage are speaking evidence of the rapid development going on in the mind of the young naturalist. Reaching the shore of South America, Darwin first turns to its geology. But before long the animal life attracts his attention. In the Brazilian forest Darwin had his first experience of the wealth of animal and Captain Fitzroy soon finished what work he was required to do in this neighborhood, and Darwin was called back to the Beagle to continue his voyage. When they arrived at the mouth of La Plata their most serious work began. Here there was much tedious charting for Fitzroy, and Darwin could now leave the vessel for a lengthy trip on shore. This was doubly welcome. Seasickness was nearly constant with Darwin while on this entire voyage and every opportunity to work on land was eagerly seized. This region, too, was rich in objects of interest and in strange people. While exploring the pampas, beyond Buenos Ayres, Darwin came across the skeletons of the great mammals some of which Cuvier had previously described. He studied these bones with much care, and recognized at once in the megatherium a great similarity in structure to the sloth he had seen in Brazil. The enormous skeletons of the glyptodons struck him also as strangely similar to that of the ar The people of this wild neighborhood interested Darwin very greatly, and he describes them with care. In this connection a charming trait of Darwin's character comes beautifully in evidence. The absolute purity of his mind, his utter freedom from grossness, shows clearly in his account of the first really semi-civilized people he had ever seen. A little later, while exploring Patagonia, Darwin noticed the terrace-like formation of that desolate country. A flat near the sea was succeeded by a rapid rise, then came another flat. Three of these terraces in succession stretch back toward the Andes. At the base of the high terraces Darwin found marine shells, largely similar to those of the ocean beach so many miles to the east. His study of Lyell led him to suspect at once that this portion of South America had been raised in successive stages out of the bed of the Pacific. When they passed around Cape Horn and up the western coast he hunted for The Beagle continued its voyage up the western coast of South America until it reached Peru. Once more the abundance of tropical life is under Darwin's eyes, but now it is the life of an entirely different section. The dry climate of Peru furnished him with an environment distinctly unlike that of the moist Brazilian forest. He collects now with avidity, gathering especially insects and birds. Then the ship turned its prow westward across the Pacific, only to stop five hundred miles out at the Galapagos Islands. This little group he studied intensely, collecting large numbers of insects and birds. He had not worked over his collection long before he realized that each island in the group had peculiarities which marked its animals from those of any other island. Whenever two islands were close together in the group the differences in their fauna were found to be comparatively slight. If, however, he examined the animals from two islands lying at opposite ends of the group, the differences were always considerably greater. There was, however, a strong general resemblance among them all and a distant though not so strong resemblance to the corresponding animals of the Peruvian The voyage was continued around the Cape of Good Hope. Pursuing the usual course of sailing A part of Charles Darwin's duty to the British Government was to write a narrative of the voyage, and this account of his trip upon the Beagle is one of the great classics of travel in the English language. It won the confidence and respect of a wide circle of readers. In his next book he published his observations made at the Keeling Atoll and announced his theory of the formation of coral islands. This was a distinctly scientific investigation, and it won such immediate favor among geologists as to increase materially the young man's reputation. No one man The publication of these books did much for Darwin. His narrative of the voyage gained the good will of cultured England in general. The book on coral reefs won the geologists. His "Manual of the Cirrhipedia" (as the barnacle book was called) secured the attention of systematic zoÖlogists. The time was not far distant when he would need every aid possible toward gaining and keeping the regard All the while Darwin was working on these books his mind was quietly busying itself with what he called the species question. The more he studied the material collected on his long tour, the more confident he became that the animals of the present are the altered descendants of the animals of the past. He tried patiently to work out every conceivable hypothesis to see whether he could account for the alteration. He felt quite sure animals changed, but how they changed, and why, he could not for a long time conceive. He knew that gardeners were constantly producing new varieties of plants, and that animals of various breeds were clearly the descendants of other and familiar varieties. Accordingly he began to study the methods of animal and plant breeders, to visit their farms, to open correspondence with them and read all their trade journals, to undertake experiments in the breeding of plants. The longer he worked the more confident he became of the reality of the change; but for a long time no glimmer of the cause by which it could be brought about came to his mind. In 1838 he came across a book by Malthus called "An Essay on Population," in which the author shows that, whereas man increases by a geometric ratio, he cannot hope to increase his food supply in more than an The number of animals of any particular species remains practically the same. There may be a few more one year, and a few less another, but on the average, year by year, the number of toads, the number of blacksnakes, the number of field mice, remains sensibly the same. Sometimes the rise of man brings an end to the wild population, and so in the past animals have dropped out of the race. Yet in the long run and for a considerable time the number of any species is constant. But each animal produces offspring in quantities sufficient to far more than replace himself as he dies out. In other words, animals increase not by addition but by multiplication. Too many are born for all of them to live. What becomes of the great mass of them? The answer is they die; most of them die young. Only a few fortunate in The skillful gardener, looking over his flowers, finds a plant of more than ordinary beauty and thrift of growth. When it comes to maturity he keeps its seeds separate from those of the rest and next year plants them by themselves. As they come up he weeds out all unthrifty plants, only allowing the strongest to come to maturity. As they break into bloom he plucks away all whose flowers do not come up to the high standard he has set for himself. After a while he has but a few plants left, but these are the thriftiest and bear the most beautiful flowers. Again he allows these to mature and selects the seed of the very finest. Next year the process is repeated. After a few generations, usually three if the man is skillful enough, he has a definite strain of flowers that will thereafter come true. This is the process of artificial selection as carried on by man. Darwin saw that Nature is constantly carrying on a similar process. She produces seeds enough on almost any plant to clothe the world in a few years if all of them could fall into proper ground and thrive like their parents. A friend of mine found a mullein stalk that bore more than seven hundred seed pods and averaged more than nine hundred seeds to the In 1842, at Lyell's suggestion, Darwin wrote a short sketch of his ideas which he, two years later, expanded into a somewhat larger account. The manuscript of these early views of the theory was completely lost and has only been recovered within the last few years. It was recently published under the editorship of Charles Darwin's son, Francis. It is astonishing to see how clearly the first short sketch states the underlying conception which all of Darwin's subsequent work amplifies. Hooker was constantly urging Darwin to write out his whole theory in the form of a book, and Darwin had begun to do so in 1856. Meanwhile, down in the Moluccas, Alfred Russell Wallace had been lying sick of a fever contracted during his exploring expedition in that neighborhood. He had been studying the distribution of the animal life of the Malay Archipelago. Overcome by sickness, as he lay in bed, he began to think over a book which he had read not long before, "Malthus on Population." Wallace had been pondering on the In 1860 the British Association met in Oxford, and Bishop Wilberforce, the retiring president, in accordance with the custom of the society, gave a summary of the advance of science, especially during the preceding year. Everyone knew perfectly that the bishop would deal with the species question, and that he would handle it severely. Darwin was prevented by his usual ill health from being present at this meeting, but Huxley was there to see that their side of the question received proper attention. The bishop made a lengthy address, in the major portion of which he brought forward entirely worthy objections to Darwin's theories. Toward its close his feelings overmastered him and he departed from his manuscript and unburdened his mind. The lack of stenog His own people wished to bury Darwin quietly at his home in Down, but Darwin now belonged to the nation. A petition signed by many public men was sent to the Dean of Westminster, asking that his body might be granted burial in the Abbey. Probably no greater honor can come to man to-day, and fortunately Dean Bradbury was broad-minded enough to acquiesce. So it came to pass that the church that had so long believed him her enemy, that had first so bitterly fought him, came at length to see that he added a new dignity and worth to her faith, and took him to her bosom. Darwin's body lies buried in the Abbey. In all the glorious company of immortal dead whose earthly frames are gathered in England's great mausoleum, there is no other one who has done so much to modify the mind of thinking man. CHAPTER IIIThe Underlying Idea We have seen in the preceding chapters how the idea of evolution worked its way through the minds of men. Man after man got a glimpse of the idea, even among the ancient philosophers. But no one could speak convincingly on the subject before modern times, when a wider acquaintance with the animal world gave a body of facts on which it was safe to base conclusions. Even then the idea eluded men, until there came a worker trained by a long voyage around the world in which he had nothing to do except to study nature. He finally gathered in his mind material sufficient to convince himself not only of the truth of evolution but of the process by which this evolution was brought about. Every scientific principle is simple in its basal idea. In actual life the action of the principle may be so bound up with others as to need a skillful mind for its detection. But under all the complexities and modifications, like a silver thread woven into a cloth, runs the basal idea. Until a master has detected it the presence of it may Mr. Darwin's mind, while slow and cautious, had a wonderful perseverance. When he had finished his work he had not only given a clear account of the process of evolution, but he had foreseen almost all the valid objections that were afterward to be brought against his theory. Some of them he had explained quite fully; of others he indicated a possible explanation; of still other questions he confessed that as yet they were not plain. But the whole theory is so simple in its fundamental ideas that it has completely revolutionized the whole aspect of modern biology and, indeed, of modern thinking in many lines. There are four underlying conceptions, each simple in itself, which must be clearly perceived before one can understand Mr. Darwin's theory of "Natural Selection." The first of these is known under the name of Heredity. It is a matter of common observation that every animal or plant produces offspring after its own kind. Under no conditions would we expect a duck to lay an egg from which could hatch anything but a duck. No Plymouth Rock chicken Why this should be so is one of the most profound problems of biology. Nothing but the fact that the process has gone on under our eyes for so long a time could blind us to its marvelous character. To open the egg of a chicken and examine it by the most refined methods known to science is to find in it absolutely nothing that could be by the widest stretch of the imagination considered anything like a chicken. The biologist who has examined such eggs before and knows them in all stages of the process may recognize in an egg which had been incubated for a short time something which his previous experience tells him will become a chicken. But it has not the faintest resemblance to a chicken until later in its development. In early spring one may gather pond snails from any country stream and place them in an aquarium. The change from the cold water on the outside to the warmer water of the aquarium and the temperate climate of the room hastens the process which in the stream would not take place until later. In a short time one may find fastened to the glass side of The regularity with which each animal reproduces its kind is no more surprising than the faithfulness of that reproduction. Some of our birds have wonderful markings on their plumage. It is astonishing to see with what fidelity the feather of a bird may reproduce the corresponding feather of its parent. It will occur to everyone how, in the human family to which he belongs, there is some little peculiarity which, while not appearing in every member of the family, when it does appear is remarkably uniform. It may be only the droop of an eyelid, it may be a tendency to lift one side of the lip more than the other, it may be the peculiar shape of a certain tooth in the set, and yet when it appears it comes with astonishing similarity in all who possess it. So much for the principle of Heredity. One of the most complicated and perplexing problems in the biology of to-day is the question of the origin of these variations. It is quite as hard to understand as is the method by which animals produce their own kind. No problem is being more earnestly studied. Suppositions we have in considerable number, and two of these at least may reasonably be mentioned. We will consider first the less certain theory. There is nothing in the egg that in the remotest degree resembles its parent. The old idea that every acorn had in it a miniature oak which only A musician may have taught his fingers to be nimble; may have given them speed of motion and precision in their action. No child of his born after he acquired this wonderful facility of execution is any more likely to be a skilled musician than a child born before he had ever practiced enough to be anything more than a crude performer. Science is nearly certain that his children are just as likely to be talented along musical lines if he himself never had become a musician, simply because he had it in him to be a musician. In other words, they may inherit the talent which he developed, but they inherited it not because he developed it, but because it was in him to be developed. This is in accordance with the famous principle that there is no inheritance of acquired characters. We shall touch this question a little more fully in a later chapter, in speaking of the development of the evolution theory since Darwin's time. If we are right in this matter, and we certainly are nearly right, variation must take place for the most part in the germ. These variations may not show until the animal has grown up, but they must have taken place among the determinants in the germ cell or they would not reappear in subsequent generations. We have endeavored to make clear two of the basal ideas underlying evolution. One of these is responsible for the continued production of animals or plants of the same kind, preventing the world from becoming a wild kaleidoscopic and fantastic dream. Heredity is the conservative force of nature. The other idea underlies the development of new departures which keep the world from being a dull, dead, unending repetition of the same monotonous material. Variation is the progressive tendency in nature. The third basal idea is that of Multiplication. Animals and plants multiply; they do not simply increase, they increase in a geometrical ratio. Anyone who has worked out one of these geometrical ratios knows how wondrously they mount up. There is an old fa Our turtles are more prolific. Twenty eggs would probably not be an unusual number. If we could imagine a turtle to live in the sea and to produce at this rate; and, if each turtle should need as much room each way as the robin, and a depth of water equal to its width, before the robins had spread over New York and Pennsylvania the turtles would have filled all the seas of the globe. Frogs are even more remarkable in this respect. Two hundred eggs is not an uncommon number. If each frog required a space twenty-five feet square on which to subsist, the entire earth would be more than covered with them within six years. It is ludicrous to think of such numbers, especially when we realize the hundreds of thousands of kinds of animals there are in the world, each of which is also multiplying, and it becomes evident at once that only an infinitely small proportion of all these creatures can possibly survive. This, then, is multiplication. Here comes into play the fourth basal idea in Mr. Darwin's explanation. This is the part of Selection. When man produces new varieties of animals he does it by picking out from his flocks or his herds such as conform most nearly to his idea of what is desirable. These he mates, and from their progeny he selects From these it results that the animals and plants naturally become better adapted to the situation in which they are placed. When, as is constantly happening through the history of the earth, a change occurs in the physical geography of any region, when a plain is lifted to be a plateau, or a mountain chain is submerged until it becomes a row of small islands, this alteration will produce uncommon hardships among animals, even though they were well fitted to the old conditions. Any animal or any species of Thus far in this chapter we have been considering the influences under which it is conceivable that animals should advance. There is no question whatever that there are too many animals born, nor is there any possible question that a very large proportion of them must certainly die. There is equally no doubt that every animal produces after its own kind, and that its offspring, while they resemble it closely, still vary a little from it and from each other. This fact is perfectly plain to the most superficial observer who thinks on the matter at all. It is not so plain, nor is it easily demonstrated, that all of these acting together do surely, even if slowly, alter the form and The opportunity to observe such a change is presented in the United States by the introduction of the The number of birds of any particular species which a region will support seems to be fairly definite. If a species is especially protected until it becomes unusually abundant, the removal of the protection commonly brings it down promptly to its original numbers. On the other hand, an accident of severe character or a special persecution may much diminish the number of the species, and still it will, within a comparatively few years, return to its previous abundance. The inhabitants of Florida who own orange groves will never forget the winter of '94–5. A bitter cold wave swept along the coast and killed such large numbers of orange trees as almost to cut Florida out of the orange market and to open the gate to California, who was eagerly offering her fruit. This same frost caught the migrating blue birds and killed them by the thousands. When spring came bird-lovers throughout the eastern United States found an astonishing scarcity of these favorites. It was feared that with numbers so small they could not possibly compete with their enemies and with whatever untoward circum In the year 1850 a resident of Brooklyn came home from a trip to Europe. He was a lover of birds, and while in Europe had been particularly attracted, no one now knows quite why, to the common House Sparrow, as it should be called. It is no more abundant in England than in many parts of the continent of Europe. A name that has been used for a long time is very hard to cast aside, and we shall probably continue to mistakenly call him the English Sparrow to the end. Our Brooklyn traveler brought home with him from Europe eight of these interesting little birds It is a serious matter lightly to disturb the balance of nature by the introduction of a new species. It is true that the sparrow did eat some spanworms and for a while enthusiastic bird-lovers hoped that here was the solution of the difficulty. Philadelphians will also remember that, with the spanworm removed from competition, the tussock moth, whose caterpillar carries on his back a series of yellow, red, and black paint brushes, at once become the permanent parasite In the first place this interesting bird is a clannish fellow. He has lost the ordinary sparrow habit and has come to like to live in crowded groups. Seclusion is not at all to his taste, and if there are only a few sparrows in the neighborhood those few will most certainly be found living near each other. One of the early adaptations of the sparrow to his city surroundings was the ability to find for himself a considerable proportion of his food in the undigested seed that could be picked up from the droppings of the horses. Man is only slowly coming to be a city-dwelling animal. Although it is a voluntary process with him, he still usually visits the country with much enjoyment. He has not as yet learned to adapt himself thoroughly to the city, for somehow city life kills him. Families that move into the city gradually have a smaller number of children in each generation until shortly the family is wiped out. The population of the city must constantly be replenished from the country. But the English sparrow is more adaptable than are the people. He has made himself at home in the heart of the biggest city. The Wall Street canyon is not deep enough, nor contracted enough, nor free enough of food to blot out the life of the English sparrow. At the heart of the deepest gully among the skyscrapers of our biggest cities we find this little bird hopping between the horses' feet, darting out from under the wheel of the push-cart, fluttering only a few yards to a place of safety, to return at once to his scanty meal upon the pavement as soon as opportunity offers. He is a typical city dweller and has learned to thrive there. Again in this matter he has distanced other birds to whom the city is more deadly than it is to people. Another very important element in his fitness for The most serious enemy the birds at large have, after man himself, is the bird of prey. Hawks and owls capture a large quantity of our smaller birds. Now the hawks and owls are for the most part shy of man. They have gotten a bad reputation, especially if they are of any size, because of their more or less pronounced proclivities for seizing our domestic poultry, and consequently many people will fire upon a hawk or an owl who would probably fire upon Man has the faculty of putting up ornamental trimmings on his house, and there is no spot the sparrow chooses more willingly in which to build his nest than the ornamental quirks and cornices of man's architecture. A Corinthian column with comely leaves in its capital seems especially designed for the comfort of the sparrow, and his distinctly untidy nest is the familiar disfigurement of almost every ornate public building. These are the advantages which come to Still another quality which makes for success in this buccaneer is the willingness with which he will vary his food as occasion requires. It is a not infrequent characteristic of the bird family that each species should have its own rather restricted diet. Birds are quite particular eaters, and many of them will come well nigh to starvation before they will use unaccustomed food. The sparrow, on the contrary, like man, eats almost anything he comes across that could reasonably be considered edible. He belongs to a group of birds which are structurally adapted to cracking the hard coats of seeds. This group of birds known as the finches is provided with the sort of bill familiar in the ordinary canary bird. It is short, heavy at the base, comes quickly to a point, and is firm and strong. With it the bird readily breaks through the hard outer coat of most seeds and feeds upon the rich cotyledons that are enclosed within. Nowhere in its entire structure does the plant crowd so much nourishment in so little space as it does in the seeds. It is not by chance Most of the English sparrow's cousins in this finch group confine themselves rather rigidly to this diet. Here the variability of the sparrow again gives him the advantage. He may have the family fondness for seeds, but in their absence he can be content with almost anything edible. In the early springtime, when the seeds of last year are gone and those of the new year have not yet been produced, the sparrow is not averse to eating young buds from the trees. At this time he is not unlikely to eat our sprouting lettuce and peas. It is easy to be severe on him in this matter; but for a creature like man, who has the same tastes, who eats the enormous buds of the cabbage, the cauliflower, and the brussels sprouts, or the more tender buds which he calls heads of lettuce, it seems particularly inappropriate that he should throw stones at this little creature whose tastes are so similar to his own. While seeds are more suitable for an elder bird they are altogether too indigestible to be the food of nestlings. So when the sparrow finds its nest full we know he must sally forth in search of nourishment more simple of digestion. Now for a few weeks he searches assiduously, catching insects and caterpillars When winter comes the struggle for existence among the birds is intensified, and comparatively few of them dare face it. Most of our birds betake themselves to less rigorous quarters, leaving to the sparrow a comparatively small number of competitors for the diminished supply of food. As long as the snow is off the ground the sparrows can find sufficient sustenance. They gather themselves into groups and sally out from the city into the open country. The immediate result is that great quantities of weed seeds are seized upon by the English sparrow, as, indeed, by every other finch which is with us in winter. Perhaps we have not given the little fellow credit for the good he does at this particular time, for the rest of the account truly does not help him in our esteem. There is a further direct advantage in the sparrow's In the song sparrow, field sparrow, chipping sparrow, and the fox sparrow the male and female are very nearly alike in color. It often becomes necessary for the bird-man to examine the internal organs of the bird he is stuffing before he can certainly decide its sex. But there is no difficulty whatever in telling the male from the female of the English sparrow. The male is far the more ornate bird. His back is striped with a richer brown; his head has two splendid dashes of chestnut over the eyes; his throat and breast are splashed with red and lustrous black; his bill is a clear fine black. Altogether the bird is strikingly colored for a sparrow, and this characteristic is the more remarkable when we see how quiet and somber is his more modest mate. This brilliancy of male plumage in the presence of the somber color of his mate would seem to indicate that the English sparrow is eye-minded rather than ear-minded. It is true among human beings that most of them are eye-minded. That is to say, they notice things with their eyes chiefly. Memories they have are memories of things seen; recollections of their friends bring up the appearance of their friends. Their language is full of metaphors which imply form and shape. But occasionally we come across an ear-minded person. But we have not nearly exhausted the catalogue of the traits belonging to our little friend which give him the advantage over other birds in the struggle for life. His ability to remain with us in winter when most birds are gone stands him in good stead. It is readily observed by one who pays the least attention to outdoor life that winter finds us with comparatively few birds. North of Maryland and the Ohio River the robin is practically absent in the winter, except in much diminished numbers close to the border. The bluebird is similarly absent; the great flocks of blackbirds are gone; the bobolink is missing entirely; the thrush and the catbird have all left; the The English sparrow was once probably quite as migratory as any of the rest of these, but a great change has come over his habits. With his newly acquired fondness for the haunts of men he has suffered a change in this respect also. Whatever may have been his reason for migrating, it no longer holds. He now finds himself quite able to stand the cold of winter. Accordingly he never leaves us, except very temporarily. When the migrating season comes the sparrows of the neighborhood are very likely to gather themselves together in a single group and take to the neighboring country. I believe this flocking on their part at this time of the year is a remnant of the old migratory habit. Until snow covers the ground the sparrow is not likely to be seen again in such numbers in the city. The advantage the sparrow gains Not only do sparrows nest early, they nest often. I suggested to one of my students that she locate as early in the season as she could the nest of a pair of English sparrows, which was sufficiently accessible, and that she keep it under observation at intervals of a few days throughout the summer. In the fall she came to me with glowing eyes and gave me her report. "It is simply great," she said. "I never went to that nest a single time this summer to find it empty. When I first got there I found four eggs; after a These, then, are the most important points in which the English sparrow has varied from his sparrow cousins and made of himself the most successful town dweller in the bird world. He has become clannish and gained the advantages of coÖperation. He has used man's highways and cars by means of which to expand his area. He has cultivated the presence of man and thus gained protection from his enemies, food from man's waste, and nesting sites on man's house. He has assumed a varied diet. The male has become handsome. He has given up migrating, and thus secured the best nesting sites. He has learned to produce many offspring. With all his versatility, why should he not succeed? Thrown into competition with our native birds, he All sensible bird-men must clearly acknowledge that he is a very undesirable citizen. I write the above sentence to show that I realize the whole duty of the bird-lover in the matter of the sparrow. This pestiferous creature should be exterminated by traps, by grain soaked in alcohol, or strychnia, by fair means or foul. But personally, I am taking no share in his destruction. Any bird-lover, after reading the foregoing ac I am going to ask bird-men to forgive me if I say that I believe, although I speak only from general impression, and not from careful research, that the sparrow within the past eight years has reached his equilibrium in the neighborhood of Philadelphia and is growing no more abundant. Meanwhile another and very desirable state of affairs is arising. Bird love and bird protection are so active in this neigh CHAPTER IVAdaptation for the Individual Among the standard books of the classical curriculum in the denominational college of thirty years ago was a volume which I suppose has practically disappeared from such courses. It delighted many of its students for a reason entirely different from that which the author meant should be its taking feature. It was Paley's "Natural Theology." The author started with a story of a watch found by a savage. This child of nature was supposed to examine its mechanism and to infer that the watch was made for a definite purpose. As I remember, he was even supposed to discover that its purpose was to mark time. It was at least to become clear to his savage mind that this was no chance object, but was the definite product of a designing mind. Having brought this hypothetical savage to these conclusions, the author turned himself to savages nearer home who fail to see design in nature. The book takes up a great many cases of interesting facts in animals and plants as clearly showing evidences of design as did the watch our savage picked up. But the inference we were expected to Some of Paley's statements were certainly peculiar. His Malay pig with its upper teeth wonderfully curved was said to be in the habit of hanging its head upon a bush while it slept, in order to save the strain upon its porcine neck. This was too much even for our credulity. None the less the impression made upon some of us by the evidence for design in nature has never left us. Among many scientists to-day it is supposed to be crude to speak of purpose in nature, and there is reason for their attitude. But the statement that there is no such plan conveys to the ordinary thinker a meaning that is far more erroneous than could possibly exist in his mind should he believe implicitly in design and purpose. As between design in the universe in the usual sense of the word, and a purely accidental connection of events in the universe, there can be no While it is exceedingly difficult to lay our hands on any animal which is at present visibly changing its structure, it is not hard to find closely related animals. These are nearly alike in structure in most respects. In a few points, however, they may differ materially, and these points are often directly concerned with different habits of life. Considered in this aspect, these adaptations of a single organ separately examined form an excellent argument in favor of that gradual alteration of the entire organism which evolution suggests. The most primitive struggle in which an animal can possibly engage is the effort to maintain its own life and vigor. This struggle will result in certain adaptations for the individual, adjustments which make for the safety of the animal himself. These form the subject matter of the present chapter. The farther up the animal kingdom we pass in the The first and most important struggle any animal has to enter is the never-ending battle for its food. Occasionally there is a similar straining after the air it breathes. But ordinarily air is sufficiently abundant, except to animals living in the water, where the supply is always more or less restricted and easily becomes exhausted. But food is the constant need of every organism, and most creatures die for lack of it. In this struggle the animal is pitted against those of his own kind, rather than against those of other species. Even his brother is his enemy, for he desires the same food. In many a nest of birdlings one of them fails to reach its development simply because the parent either is unable to find or it cannot carry enough food to satisfy all the hungry mouths in the same nest. Before the nestlings are ready to take After the battle for food comes the struggle for shelter. For most animals there is no such thing as shelter. They are exposed to the inclemencies of the weather and to the depredations of their enemies without the means of retiring into any situation which might protect them. In the higher animals, especially when they are warmer blooded and their bodies must be kept at a higher temperature, some form of covering has come to be almost universal. Though comparatively few animals are prepared to seek shelter from the cold, all of them have enemies against whom they must battle. These foes may wish to eat them or may simply wish to get them out of the way. In either event this struggle is so persistent and so keen that after starvation it is probably the source of the largest loss to the animal kingdom. Considering first the feeding habits of animals, we find they are exceedingly varied. Some creatures simply engulf other and more minute animals, often only microscopic in size, in such quantities as to satisfy their hunger. Others, feeding upon larger plants or animals, must have some means of breaking off particles of this food; still others confine themselves entirely to nutritious fluids, and must have organs adapted to this particular type of food. A glimpse at the mouth of the butterfly captured on an adjoining flower will show a most remarkable variation from that seen in the grasshopper. Practically all of the mouth parts mentioned are present in this insect, and its early ancestors had their organs practically like those of the grasshopper. Now they are so modified and united with each other as to be almost unrecognizable. The pair of soft jaws has become very much elongated, and they lock together in such a way as to enclose a hollow space between them through which the creature can suck its fluid food. Not only have these soft jaws joined together, but, because they have become so much elongated when not in use, they must be coiled up like a watch spring and laid between two hairy lip-like processes which correspond in reality to the two finger-like feelers of the grasshopper's hind lips. The butterfly, lighting upon the corolla of the flower, uncurls this long "tongue," and through its hollow center pumps up into its crop the nectar which the flower has stored in its base. When the butterfly comes to get the nectar from the flower, it rubs upon its own hairy body pollen from the stamens of the flower and carries it to the pistil of the next flower Insects which wish to use for their food the juices of other animals or of plants do not find them so easy to gather. In the mosquito most of the mouth parts are developed into slender pointed bristles wrapped in a hind lip. These bristles serve to puncture the skin of the creature attacked, while the curled lip serves as a tube through which the blood may be extracted. If, while sitting on the porch on a warm summer evening, mosquitoes begin to annoy, let one of them at least serve to show his method of procedure before he is destroyed. Allow the creature to alight upon the back of your hand and slowly raise the arm until the eye looking at near range can see the head of the mosquito, which, by the way, is sure to be a female. Males in this species are entirely harmless. They never eat after they have grown up; that is, after they are truly mosquitoes. But the female is very Anyone who thinks carefully can add numberless A second great class of specialization is seen in the changes of habit that provide the animal with shelter. The home seems so necessary a part of human life that it is almost impossible to think of an animal having nothing that in the faintest degree could be called a home. We at least expect it to have some sheltered place in which it passes most of its time and to which it returns after its wanderings. The great majority of all animals have no such home. The place in which we find them to-day may not be the place in which they will be to-morrow. All places are alike to them. The ordinary conduct of their daily life drives them about in the search for food. Their attempt to escape from their enemies leads them each day into new situations, and they may, and probably do, have no power to recognize the old location if Our own need for shelter is the prime motive in leading us to build a home, and this necessity arises first of all because of our warm blood. What we are accustomed to call cold-blooded animals are not truly so. Their blood holds practically the temperature of their surroundings. As the air or the water in which they live grows warmer or colder the bodies of these creatures alter with it. Consequently they are active when the temperature is high and grow more sluggish as the thermometer falls. When the day grows distinctly cold the animals may go practically dormant. Only the birds and mammals have warm blood, and of these the birds are distinctly the warmer. Whereas the temperature of the mammals runs from about ninety-eight to a hundred degrees Fahrenheit, that of Young mammals and birds, before their clothing has well formed, are naturally susceptible to cold; this leads to the first genuine approach to a home among animals lower than man. Birds lay their eggs long before the creatures inside of them are ready to emerge. Accordingly they have learned to build nests in which to place these eggs, and to protect them from the outside air; meanwhile the bird keeps the eggs warm by close contact with its own body. The lowest of the birds may lay their eggs simply on the When we remember that both mammals and birds are the modern descendants of cold and scaly reptiles of an earlier geological time, it becomes interesting to compare their clothing. Evidently in the mammals hairs began to come out between the scales. Gradually the scales became fewer and the hairs more abundant until finally the scales have all disappeared, except those that remain as the claws on the toes. The ancestors of the birds, on the other hand, boldly transformed their scales into feathers. Another need for shelter arises in connection with the approach of winter. This problem of withstanding the cold season is complicated by the presence of two new factors. First and most directly, the cold itself is a distinct obstacle to the comfort of many of these creatures; as a secondary result of this cold, the food of many animals disappears entirely in winter. Different fur-covered animals have specialized to meet the winter by any one of three different methods. They may brave it out, hunting for their food as best they can all winter long. Such a course is pursued by the rabbit. Again like the squirrel, they may store large quantities of food during the summer, and on this provender they may subsist during winter, remaining for most of the time near their hiding-places, which, however, they may frequently leave upon warm days. A third method is less common, but very interesting. The groundhog or woodchuck is the best-known example of the group. It remains asleep, or, as it is technically known, dormant, during the winter. This stupor is more profound than ordinary sleep, and from it these animals awaken with difficulty. It is needless to remark that the groundhog's As for the backboned animals which are cold-blooded, these must, unless they are fish, give up the struggle completely, bury themselves in out-of-the-way places, and go worse than dormant. They often become absolutely cold and stiff. In the case at least of fish, it is quite possible for them to be frozen stiff, even to be enclosed in cakes of ice, and still to recover if the encasement is not too long continued. But the snakes, the turtles, the toads, the lizards, all are hidden beneath the ground waiting in absolutely unconscious rest the return of warmer weather. After the need for food and shelter comes the continually recurring necessity on the part of almost every type of animal to escape from the unwearying persecution of higher creatures which would feed upon it. The whole creation is a constant network of animals which prey upon each other. It is the fate of a great majority of all creatures to fall victim to other animals to whom they serve as food. Accordingly na But there is another tendency of animals which leads them when frightened by their enemies to remain quiet. If this impulse is obeyed thoroughly enough, it is easy to see how the owner of this habit might entirely escape detection by his enemy. Any restless animal unable to restrain his nervous agitation naturally betrays his presence and is picked off. The result of evolution along this line would be the exact reverse of the preceding. Those that lay most absolutely quiet would be the parents of succeeding generations, while those who were slow in coming to rest, or were indifferent about remaining quiet, were picked off, and their tendency eliminated from the future of the species. In this way many animals have come to keep entirely quiet in the presence of danger. It is not a sign of high intelligence. As a matter of fact, it is rather a stupid procedure, so far The "June Bug" (which is not a bug, but a beetle, and arrives in May) has this interesting habit of keeping quiet. If in its flight it strikes the globe of an electric light, it falls at once to the ground, and remains perfectly quiet for a time. After a short interval it recovers and starts out to regain its previous activity. But this recovery is by slow stages, and the whole procedure on its part looks exceedingly stupid. The little snake with flattened and expanded head, known as the blowing viper, or puff adder, is one of the most amusing representatives of the tendency to "play dead" that could well be found. If you strike him the faintest blow with the lightest stick, he at once goes into apparent convulsions, in which he seems to suffer the greatest agony. Then, throwing himself upon his back, he, to all appearances, yields up the ghost. If, however, you retire but a slight distance and keep your eye upon him, you find that his ghost returns after a comparatively short absence, and he slinks away out of danger. This is the most effective exhibition of this kind with which I am acquainted. As for the habit of "playing 'possum" on the part of our opossum, the trick would seem to be particularly inane. The truth of the matter is, what is at Man himself possesses to a marked degree this impulse to keep quiet in danger. The man from the country who is visiting the large city, suddenly startled by the "honk" of the auto horn, finds his power of movement promptly arrested, and he is not unlikely to be struck and injured by the machine from which the city dweller would easily escape. This is not particularly to the credit of the city dweller, who, when in the country, may find himself similarly startled by the sudden appearance of the calf, the pig, or the sheep. The bull, which a country boy, accustomed to him from childhood, will drive with a willow switch, is a source of terrified concern to the city man. While the trick of keeping quiet serves many an animal in time of danger, there is another device for The idea of protective coloration is that very many animals have ordinarily come to be colored like the background on which they live. The process has When we see how much the various members of the same human family may differ in complexion, how much the various pigs in the same litter may differ in size and in coloration, it is easy to understand that among these caterpillars which have eaten the cabbage there must have been considerable color variations. I do not imagine for a moment that the birds had any preference for any particular color in their cabbage worms. They took every caterpillar they saw, but they naturally first saw those that were least like the The same sort of activity has resulted in the peculiar green color of the katydid. This creature lives chiefly upon the leaves of trees and shrubs. This insect is so large that, even though it is leaflike in color, it might still be conspicuous. As a result those katydids whose wings were most like leaves in form were least likely to be picked up by the passing bird. This sort of protective appearance is intensified by exactly the same means as that which brought about protec The katydid has materially assisted in its own preservation by being active chiefly at night. In the daytime it keeps comparatively quiet. Thus seated upon a twig, especially if hidden among the leaves, it is almost unnoticeable. At night, however, it moves about more freely, seeking its food and eventually its mate. At such times it becomes distinctly more conspicuous because its wings are steadily fluttering. The hind wings are filmy and are very light green. The creature looks most ghost-like as it flies through the evening air. A very similar history lies back of the coloring of the ordinary toad. Though descended from the frog, and originally a creature of the water, the toad has long since adapted itself to live upon the dry ground. It still produces its young in the water as it did when a frog. Whereas the childhood of the frog, that is, its tadpole stage, is very long and it assumes its adult form comparatively late, just the reverse is the case of the toad. The young hasten through their tadpole stage within a few weeks, and assume the shape of The little toads started out, perhaps a hundred at a time, from the small pool in which their eggs were laid. These creatures find dragons on every side. The gartersnake comes along and gets his first toll; the heron follows him and takes such as catch his hungry eye; the turkey gobbles up his from what are left. By the time the toad-eating creatures in the neighborhood have taken such as they found, there are very few remaining. These doubtless have been left for a very good reason, generally because they were not noticed. This was because they looked like I have noticed that if a snake and a toad be placed in the same cage, when the snake approaches to capture the toad the toad drops into a squatting position, and is very likely to blow himself up until he is rounder in outline than he was before. Whether this is a deceptive trick which makes him the more resemble a stone is more than I can say. I do not remember having seen our eastern toad do it. I have seen it happen a number of times in the laboratory of a Colorado naturalist, and it is quite possible that in the open country more sparsely covered with vegetation than is our ground in the east this inflating device may serve the toad more effectually than if it kept its own outline. Even among creatures far more active than the toad and the katydid an inconspicuous color must certainly result in distinctly better protection. Everyone knows the jay and the cardinal when first he has seen them, if only he has a slight acquaintance with their One aspect of protective coloration has been brought to our attention by the artist, Mr. Abbott N. Thayer. He first clearly explained why it is that animals are usually so much lighter on the under side than they are upon the upper. Mr. Thayer proves his position by taking some ordinary cobblestones and painting one of them a uniform color and placing it upon a board painted the same color. One would think the stone would be inconspicuous; as a matter of fact, is quite easily seen. The underside of the stone, turned Many a person, looking down into the water from a bridge, sees nothing whatever of the fish in the water below, because their backs are exactly like the bottom of the stream. Suddenly one of the fish, by a quick movement, turns its lighter under side over in such a way that it is clearly illuminated from the sky. Immediately a flash as of silver strikes the eye of the onlooker and makes him aware of the presence of the fish which had previously been undetected. If rendered thus suspicious, the observer will carefully examine the bottom of the water, he may quite likely find dozens of fish which had previously escaped his attention. Nature is very versatile. So many of her apparently chance ventures have proved successful that she has retained many devices by which her children One of the most interesting developments of this peculiarity is found in the case of the common skunk. This creature has in each groin a gland capable of secreting a highly offensive fluid. Ordinarily this liquid is kept safely within its sac, and for a long time none of it may escape. When closely cornered, the skunk will turn its tail toward the enemy and with a quiver and a flip of his tail it can guide the openings of two little tubes that come out along the root of the tail in such fashion as to eject the fluid in a fine and foul-smelling stream against the animal from which the skunk would escape. Once fairly hit by this fluid, I imagine most animals will drop the skunk. A dog surely will, and will hate himself for having made Not as prompt in its action, but in the end nearly as effective, is the protective device which the toad sometimes uses to his distinct advantage. May I be pardoned a personal account of this particular feature. It was my good fortune to be for a short time a student in a class taught by Edward Drinker Cope, one of the most brilliant of our American biologists. Prof. Cope mentioned in class the fact that the Batrachians (the group to which the toad belongs) have in many cases the power to emit from their skin a fluid which is sufficiently nauseous to deter an animal from eating the creature that secretes it. Upon such authority as this, I had no hesitancy whatever in repeating Cope's statement. One morning I had a class in the field studying the ground ivy, whose dainty blue flowers were lifting themselves out of the dewy grass. While we were thus engaged, a A year later I had a class down by the side of a neighboring pond. The pool was not an attractive There remains to be considered the most effective plan yet mentioned of escaping the enemy, and that is of really escaping. In all the devices we have considered thus far the enemy is eluded. When the creature lies quiet, or finds safety in its protective coloration, or in its bad taste, or unpleasant odor, it still remains in the presence of the enemy. A more progressive plan altogether is to escape the enemy by flight. The great advantage of this plan lies in the fact that the acquisition is valuable for every purpose. The creature then can escape the enemy, can range widely for food or for a mate. This gives it an enormous advantage in the struggle for life. The power to fly, in insects, was doubtless originally gained in the attempt to escape the enemy. Among many of the lower animals it is nearly the only purpose that flying serves. Later on it enables the animal to pass from one food locality to another. In a few creatures it plays an effective part during the mating season. These last are probably both derived powers, and the original function was that of escape from the enemy. The grasshopper has grown its long legs to serve him for safety, and through them it is helped along, moving about chiefly by leaps when it wishes to go any material distance. It is only toward Among mammals the attempt to escape from the enemy has led to an interesting development, which will be more fully explained in a later section when we speak of the history of the horse. The early mammals walked flat-footed, as we do on our feet and as the raccoon and the bear do on theirs. Gradually, however, as their enemies became more fierce and better able to injure the larger mammals, the latter gained in power of flight, and this gain consisted first in rising from the toes, lifting the heels completely off the ground. At the same time the leg and foot were gradually lengthened. Doubtless in this way the The method of escape from the enemy involves cowardice. "He who fights and runs away may live to fight another day," and so it may be the part of wisdom in the weak creature to escape from his enemy by flight. It is a far more estimable process, from our standpoint at least, to stand against the onslaught of the enemy and beat him upon his own ground. This end is secured in many animals by acquiring horns or by lengthening certain of the teeth. The horn is a very ancient instrument of defense. When the reptiles ruled the land horns were not uncommon. They consisted in those days of hardened scales, which lengthened and fastened themselves over a core of bone. Such an old-fashioned instrument, sometimes made of newer materials, still remains the defense of a number of animals. The rhinoceros has upon his nose a lengthened projection, which is what might not improperly be called hair glued into a cone. This enormous horn is a frightful weapon, both of offense and defense, and, when backed by the terrible weight of the body of the rhinoceros, it can do as Among the carnivorous animals the teeth, which were developed first chiefly for the tearing of flesh in its consumption, became effective for their courageous owners. Because these tearing teeth are well developed in the dog they have come to be known as canine teeth. Usually where an animal can use its teeth effectively for offense or defense, it is the canine teeth that are thus modified. The cat has developed them better than the dog, and one of the cats of a bygone geological period had canine teeth so magnificently enlarged and so sharp at the back as to give this frightful creature the name of the saber-toothed tiger. The long teeth in the upper jaws of the elephant, commonly known as tusks, are not canine teeth. The elephant has completely lost his canines. His tusks are his incisors, and they have developed as have almost no other teeth in the mammals. These are only a few of the numberless devices nature has evolved for furthering the success of her children. There are so many others that to many of us they form almost the chief point of interest in our study of a new animal, or our closer observation of an old friend. CHAPTER VAdaptation for the Species The strife, as we have described it thus far, is a purely selfish struggle. Every point gained is a point favorable to the welfare of the individual animal. But nature is uncommonly careless of the individual unless the advantage gained is also of use to the species as a whole. Very often the life of an animal ceases when provision has been made for its young. The male garden spider may have a long and dangerous courtship, in which the uncertain temper of his ladylove may lead her to bite off four or five of his eight legs. But her ingratitude is not yet complete. He may have barely accomplished his desperate purpose of fertilizing her eggs at all hazards, when she ends the process by eating him. The male bumblebee fertilizes the female in the late summer and then dies. She does not lay her eggs before the next season. So it happens that no bumblebee ever sees its own father, and no father bumblebee ever sees his own children. In the honey bee the male, which has been fortunate enough to fertilize the queen, pays for his honor by death An animal need not always be successful himself, but it is more essential that he hand down his successful traits to those who come after him. It is more important for the future generation that an animal should have had it in him to do great things, though he himself really have never done them, than that he should have learned to do great things on a meager original endowment. Not what an animal accomplishes is important to his children, but what he has it in him to accomplish. Accordingly Nature is full of devices by which those who have proved their original endowment by winning out in the struggle shall hand on this endowment to a subsequent generation. In other words, Nature is anxious that they may successfully mate. Here we are again on distinctly debatable ground. Darwin himself believed thoroughly in what he called sexual selection. It is the essence of this idea that the males and females have grown unlike, more technically have developed secondary sexual characters, through the choice of the mating pair. It would usually be the more serious loss if accident should come to the female, for she may carry fertilized eggs for some time. Hence, if both sexes may not become attractive, it is usually the male that de An interesting reversal of this process has taken place in civilized man. His more savage ancestor adorned himself more lavishly than he permitted his mate to do. With the advance of civilization man has undertaken to defend his own mate most valorously. The result is it is safe for her to be beautiful. Under these circumstances, however, it is more necessary to her welfare that her consort be vigorous rather than that he be handsome. Hence in the human species beauty has become the prerogative of the woman, and this is increasingly the case the higher the civilization. Whether woman suffrage and self-support will reverse this process remains to be seen. There are indications that point that way. There are many biologists who are at present expressing serious doubt as to the validity of sexual selection. As in the previous cases of protective coloration, I believe it will be wise for us to retain, even though with an interrogation point behind it, the idea of sexual selection until such time as those who object to it have furnished us with another theory which will more nearly account for the observed facts. While entirely conscious of the possibility that there is a weak spot in the theory, we will still tentatively hold to sexual selection. The fact that beauty in If attractive coloration is effective anywhere in the animal world, it will possibly be found among the insects, but it is especially likely to be found among the birds. Very many field workers in these groups feel quite sure of the value of attractiveness. When butterflies chase each other up and down, circling and doubling, following each other for long distances, it would certainly seem as if they were pleased with The great difficulty in understanding sexual attraction in insects, as based upon beauty, lies in the undoubtedly lower development of their nervous activity; in other words, in the apparent absence of anything worth calling mind. I think no one imagines that a butterfly, looking upon two other butterflies who are competing for her affections, deliberates between them and determines to admit to the circle of her friendship the more brilliantly colored male. Moths are so irresistibly attracted to a light as to fly into it without apparent power to withstand its influence. They repeat the flight again and again until they are destroyed. If they react so vigorously to the stimulus of the light, it seems not impossible that they may also act vigorously to the stimulus of color pattern, and that the male most beautifully colored, according to the nervous ideal of the female, should win her unconscious regard. At least it is certain One very large group of the night-flying moths have been named the "underwings," because of the fact that their hind wings are very much more brilliant than the front, and in lighting they fold the dull pair back over the bright, completely concealing them. It is among birds, however, that brilliant coloration serves its most effective purpose. The birds are alert, exceedingly quick of sight, and are much more discriminating than insects in almost every respect. It is not so impossible that these creatures might even voluntarily prefer a distinctly more brilliant mate, though the voluntary character of the process is not essential to its success. Men certainly are constantly attracted to women for whose charm it would puzzle them to account. If this is true with regard to men, it is certainly probable that birds would be largely influenced by phases of attractiveness, of which they were observant, but unconscious. Certain it is that in many birds the males are far more beautiful than the females. Perhaps the commonest illustration, and, at the same time, one of the best is found in the so-called red-wing or swamp blackbird. The male of this creature is a brilliant Another illustration of the remarkable superiority of the male over the female, in many parts of the bird world, is seen in the case of the common barnyard fowl. The rooster is so much more gorgeous than the hen that anyone reasonably acquainted with these birds cannot have failed to notice the fact. In some of our modern varieties we have by breeding colored them nearly alike. The original chicken is The attraction of beauty is not the only lure by which a creature may win its mate. Sound may captivate as effectively as beauty. This is true of insects as well as of birds. Certain insects at least advise their mates of their presence by means of a sound which they emit. This is particularly noticeable among the group of straight-winged insects to which the grasshopper, katydid and cricket belong. The grasshopper has a ridge on the angle of his wing and a roughness on the side of his leg. When these two are rubbed together the result is sometimes a fiddling, sometimes a snapping or cracking sound, differing in different grasshoppers. I doubt not these sounds are pleasing to the female of the species, for they are always made by the male. The katydid, instead of fiddling in this way, has a sort of drum on the angle of his one wing, which he can rub over a tooth in the corresponding angle of his other wing, thus producing the familiar "katydid" sound. I have never One observer of the chirping of the cricket says that the pitch of the song varies with the temperature. He has even worked out a formula by which one can tell the pitch of the chirp, if he knows the temperature, or, knowing the temperature, can determine the pitch. Of course this is too mechanical; yet it indicates that there must be considerable relation between the two; the warmer the cricket the happier he is. It is the males among insects that chirp their love songs. The females never answer them. There is a peculiar notion that the female katydid, when thus accused of some offense, replies "katy didn't." The truth of the matter is that no female katydid ever replied to the accusations of her lover, if accusation it be. She is absolutely dumb, not having the drum upon her wings with which to reply. She is provided with ears wherewith to hear, and, strange to say, she keeps them on her elbow, as does also the cricket, Everyone who lives in the country, or goes into the country in the summertime, is sure to know the humming of the so-called locust. It is an unfortunate fact that the word locust may have several meanings. It is properly applied to one group of the grasshoppers. The creature most commonly called a locust is a cicada, or harvest fly. When the weather gets quite warm the cicada starts his love song. He has two long flaps to his vest, and under each flap he has a vibrating drum head. This is set shivering by a muscle on its under side. The female cicada again is silent. It is among birds that the love song reaches its finest development. It may consist simply of a little chirp as in the chippy. It may consist of two notes of a different pitch repeated steadily, as in the tufted titmouse. It may attain considerable variation, as in the robin. But in the choir of our best singers, like the catbird, thrasher, and mocking bird, there is unending variation of notes. It seems almost impossible to doubt the charming quality of this voice upon the mate. It certainly is chiefly confined to the mating season, and is indulged in almost entirely by the males. This does not mean that a male does not sing excepting when he wishes to charm his mate. But In addition to the allurements above described there are certain peculiar behaviors of the animal during the mating season which are intensely interesting. Sometimes they consist simply of a wild delirium of joy, which overpowers the animal completely and makes him do wonderful things. Birds will fly with impetuous leaps in the air, mount higher and higher, singing wildly, only to turn suddenly at the top of the flight and drop promptly to the ground. I have seen such ecstatic flights in the oven bird and in our rollicking gold finch. I have seen a catbird on his way to a tree turn three somersaults, much like those performed by a tumbler pigeon, after which he alighted upon the bough. None of these acts seemed deliberately performed in front of the females, but I have seen three or four killdeer parading in most stately and precise manner, spreading their wings and fluffing their feathers, performing a sublimated cup-and-cake walk amid a circle of attracted females. Even our little English sparrow, as I have previ It is not only necessary that the animal should be able to attract a mate. There may be more than one claimant for the damsel's affection. In many animals we see provisions whereby the male may effectively deal with his rivals. This is especially likely to be the case if the animal be a polygamist. In every species there are produced about as many males as females. If the polygamous habit leads one male to gather about him a group of females, with whom he mates, it is evident that he is displacing an equal num Among the members of the deer family this particular phase of the relation between the sexes has produced in the males, and only very rarely in the females, the magnificent branching horns. These are intended not so much as a protection against the enemy as for an offensive weapon in the battle for the mates. Beautiful and stately as are these magnificent horns, they last only for a part of the year. We begin to understand their meaning. When the wolf is hungriest, toward the close of the bitter winter, the deer is without horns. When the time for mating comes, the deer within a few weeks grows his horns, which at first are covered with a plushlike coating, known as velvet. After a while this dries and he rubs his horns In the case of the fur seals polygamy has carried its specialization of the males to a remarkable extent. The bull seals are several times as large as the cows, and are provided with terrific canine teeth. With these they battle with a violence that very often results in the death of one of the combatants. A successful bull seal who has gathered about him a cluster of seal cows is seamed and scarred with the marks of his annual combats. One more type of adaptation can be profitably considered. Animals have developed many devices which serve for the protection of their young. The wonderful silk spun by the spider was evidently primarily intended to serve as a covering for the eggs. Probably all of our spiders agree in using the silk for this purpose. Many of them employ it for practically no other, though there are half a dozen different uses to which different spiders may put their silk. Under these conditions we have a right to infer that silk was primarily developed as a coating for the eggs. In the case of some of our spiders a little fluffy mass of silk covers the egg, while a firmly woven sheet of silk covers both egg mass and fluff, holding it flat against a wall or the trunk of a tree. In some of the higher spiders, notably our bank spiders, the silken covering Most insects die before their eggs hatch; accordingly they can pay no attention to their own children. Whatever arrangements are provided for the safety and strength of these offspring must be provided before they appear. About the only care the majority of insects take in this direction is to see that the eggs are placed where the young shall find food as soon as they emerge. Insects' eggs are very small, and as a consequence the creatures which emerge from them are likewise exceedingly minute. As a result they cannot be expected to hunt far for their food. Different insects use different devices by which to overcome this difficulty. The katydid, for instance, must die with the approach of fall. Her children will not appear until the following year. Her food consists of leaves, but to lay the eggs in such a situation would be a fatal process, because the leaf will drop off before the eggs hatch. Accordingly, the katydid lays its shield-shaped eggs in a double row near the end of a young twig. Next year when the weather is sufficiently warm to hatch katydids, it is also warm enough to force the buds on the end of the twigs. Everyone who is at all familiar with country life and gardening is familiar with what is called the potato or tomato worm. It is a long, green, smooth, caterpillar, as long and as fat as your finger and provided with a horn upon his tail. The gardener may not know that after a while this creature will burrow into the ground, and there change into an oblong brown mass with a sort of a pitcher handle at one side. Next year this pupa will split down the back, and from out of the brown case will come a hawk-moth, which soon will fly with rapidly quivering wings and feast upon the nectar of our moon flowers or on that of the "Jimson" weed. Those who have cleaned these pests from the potato or tomato vines will often have noticed one of them covered with what look almost like grains of rice. This appearance reveals an interesting story. Some time earlier an insect that looked very much like a dainty wasp with a rather long sting in its tail hovered over the caterpillar. This is the ichneumon fly. Eventually lighting upon the Another remarkable provision for the young on the part of insects is seen in the behavior of the big sphex wasp, known as the cicada killer. The cicada, it will be remembered, is what is commonly called a locust. The cicada killer is a magnificent big wasp, whose body is nearly an inch long, banded with black and yellow, while the wings are colored a smoky brown. This muscular wasp digs a long tunnel eight or ten inches deep, which ends in a slightly larger room. Having provided the location, he now sallies forth in search of the cicada. The heavy song of the male probably serves as a guide to the wasp in case Still more remarkable adaptations for the care of the young appear among the birds. Here the eggs are not to be deserted, but are to be cared for until the young appear. These again must have attention until such time as they are quite able to take care of themselves. The birds are warm-blooded animals, and even their young, while they are developing in the egg, are warm-blooded. Consequently the temperature of the egg must be maintained evenly and uniformly, or there will be no development. As birds rise higher in the scale the nest-building becomes a more complicated affair, and after a while we find a well-woven substantial nest, through which even the air will not chill the eggs enough to prevent Far more remarkable than any of the devices thus far described are the wonderful developments which have come in the class of animals known as the mammals. Here the most wonderful protection is made As long as we thought of each sort of animal as being a separate species shaped in the beginning by the hands of the Creator, each of these devices seemed to us a new manifestation of the Divine Providence, whose fertile planning had conceived so many methods of providing for his children. Unconsciously we thought of God acting as man acted. Each animal seemed a purely separate invention purposely designed for an especial place. Now we understand the plan in creation better, and see that each animal has come from another not quite like itself, some distance back, and this from still another. Our admiration for these devices as they arise through evolution is no less, but takes on another form. CHAPTER VILife in the Past Anyone who earnestly studies plants and animals as they exist in the world to-day cannot help wondering how the earth began and where it got its life. This is the true end and aim of geological study. The history of man seems to run back into a far distant and gloomy past. Except for the poetical account in Genesis and the traditions of various peoples throughout the world, real history fades away into an earlier time of which there are no written records. When the delvers in the Mesopotamian plain talk to us of kingdoms running back through seven or eight or nine thousand years, we seem to be getting back to the beginnings of things. But seven or eight or nine thousand years are as nothing in comparison with the age of the earth, which runs back into a past so limitless that no man can safely assign any set figure to it. In a recent paper, Dr. Walcott, of the Smithsonian Institution, says that the antiquity of the earth must be measured not in millions, for they are too short, nor hundreds of millions, for this carries us too When we attempt to study the past we find its various epochs unequally clear to us. In human history only quite modern times are absolutely clear. The history of the Middle Ages is distinct enough for us to build for ourselves a picture of the time with reasonable hope of gaining a correct view of the state of affairs. Back of this comes the long stretch of the Dark Ages, in which here and there we have bright spots, but it will perhaps long be impossible to portray clearly the life of the people. Getting back to the Romans, things once more become reasonably plain, as is true also in the case of Greek history. Back of this stretches the Egyptian with fair precision, and, older than it, the Babylonian and Chaldean. But these past three have not left nearly so definite an account for us as did the later civilizations of Greece and Rome. When we try to go back of these we must change our method of study entirely. Writing is absent, and all we know of earlier men must be inferred from a few pictures that were daubed on the rocks or carved in ivory or bone, from tools made of stone or bone, from a few metal or stone ornaments, or from the bones of the men themselves. Even so, the history fades out without telling us its own beginnings. It What is true of the human story is quite as true of that of the earth. Recent steps are very plain. We may read them with considerable confidence. As we go deeper into the rocks and find older fossils, the evidence becomes less certain. The animals differed enough from those of to-day for us to be less sure what they were like. As we keep on moving backward through time, and downward through the rocks, we find, after a while, strata in which there are evidences of life that existed long ago, but in which these traces are so altered that it is impossible to tell what sort of living things existed; we learn only that they were alive. Going back still further, these fade out. There is no knowing when the earth began; there is no knowing when life began upon the earth. It is not meant that men have not wondered, even reckoned carefully, as to how long ago each of these events occurred. Many speculations have proved entirely useless, a few remain as yet neither confirmed nor disproved, and of such we shall speak. For the last hundred years the theory of the earth's origin suggested by the Marquis Pierre Simon De La Place, of France, near the end of the eighteenth century, has held almost undisputed sway among men With such material in the heavens to guide him, La Place suggested that the sun had once been an enormous fire mist scattered over an area billions of miles in diameter. This gaseous material, by the attraction of its particles for each other, began to condense and contract. When the plug is pulled from a washbasin the particles of water, in moving toward the center, in order to get out of the basin, invariably set up a rotary motion. As the particles of this diffused nebula began to gather together they, too, gave to the mass a rotary movement. This grew more and more rapid, with greater contraction, until the particles on the outer edge of the rotating mass had just so much speed that the least bit more would make them tend to fly off as mud would fly from a revolving wheel. When this point was reached there was a balance of forces which made the outermost portion remain as a ring while the rest contracted away from it, leaving it behind. It was La Place's idea that this process had repeated itself, and ring after ring had been left behind. Finally the sun condensed and grew into a ball, occupying the center of the system. At varying distances from it were to be found either rings or planets which had been formed out of such rings. For La Of course, so detailed a theory concerning anything of which we know so little has always had much ridicule thrown upon it, and yet no truly competing theory has been proposed until very recent times. Within a few years a Planetesimal Theory has been announced, and is gaining considerable prominence, although it is too early yet to say whether it will supersede La Place's idea. In this theory, also, the suggestion comes from the heavenly bodies. With the increasing study of the nebulÆ, many forms of these interesting bodies have been discovered. A very common type consists of a great coherent central mass, with two or more arms extending from opposite sides in the form of a spiral. This is as if gaseous re These twisted arms are not equally dense throughout, but have thickened knots here and there in their course. The Planetesimal Theory suggests that these thickened knots are embryo planets and the central portion of the nebulÆ an embryo sun. After all the material in such a body has condensed either around the knots or about the central mass a new solar system will be complete. As before stated, neither of these theories can be said to be demonstrated. Each of them has points in its favor and each has its difficulties. It is pleasant to know what men have clearly thought concerning such questions, but for a man not a trained geologist neither will carry much conviction. He will still rest with his own early conclusion that whichever shall prove to be true, for him his old formula is still valid, "in the beginning God made the heavens and the earth." He will no longer think of God as having shaped the balls with his own hand and thrown them into space; he will no longer dream that it all occurred within a week not more than six thousand years ago; but still to him will come the reverent conviction that, whatever the plan by which Now that we have tried to stretch our imagination back to the origin of our globe, the question not unnaturally comes to our mind, how long ago did all this happen? Is there any possible means of telling when the history of the earth began? All such attempts lead either to indefinite or to uncertain conclusions. Each man who essays the problem approaches it from a different side and ends with a different result. But no matter what the method of approach, all are agreed on at least one point, the enormous length of time, as counted in years, through which the earth has lasted. One great mathematician worked on the basis of the rate of the present cooling of the earth. Counting backward to the time when the earth's surface must have been hotter, according to La Place's idea, he decided that our globe has been cool enough for the existence of life upon it for a period of somewhere in the neighborhood of one hundred million years. Those who try to study the rate at which mud is being deposited in our bays and at the mouth of our rivers, and who hence try to deduce how long it has taken to produce the thickness of all the stratified rock we know, arrive at a figure larger, rather than smaller, than that mentioned above. The same is true of those who try to count the age of the earth by the rate at The following table gives us the names of the periods into which the geologist has divided the past history of the earth. The first column gives a simple name, which, in each case, is a translation of the technical name the geologist gives to the era. This technical name is also given in parenthesis. The second column shows the number of years ago at which this period may be placed, while the third column gives a series of names most of which are in use in geology and which are intended to indicate the stage of advancement of the higher animals in that particular period. Some of these names are perhaps giving way to later terms, but all of them will be understood by
Having seen what the scientist supposes to be the method of formation of the earth itself, it will be This process of life arising from matter that is not alive is known as Spontaneous Generation. Two hundred years ago it was supposed to occur frequently. It was common belief that the beautiful pickerel weed which borders our Northern lakes, after freezing, went into a sort of protoplasmic slime out of which pick Not all has been said, however, on this question. The chemist is learning in the laboratory to produce many substances which, until very recent times, were produced only in the bodies of animals or plants. Dye-stuffs were originally gotten almost entirely from animal or plant material. At present the great majority of them are made in the laboratory, and in not a few cases they not only imitate the color of the older material, but actually have identically the same composition and constitution. The laboratory-made material is exactly like that made by the animals or the plants. The same is true with regard to a large number of Attempts have been made to manufacture proteids, but these have as yet eluded the efforts of the chemist. He is beginning, however, to come nearer understanding their composition, and when he once clearly comprehends that he may be able to reproduce them. One of the German chemists is convinced that the nuclein in the nucleus of the cell is not a very complicated compound. Under such conditions it is not a matter of surprise that the physiological chemist should be constantly dreaming that he may at some time produce living matter in the laboratory. To the ordinary mind it scarcely seems possible. We are so There is another way of approaching this life problem, though it seems to be rather a begging of the question than a solution of it. Of recent years it has been discovered that even the very low temperatures obtained by evaporating liquid air, say three hundred degrees below zero, Fahrenheit, do not kill seeds or spores of mold. The space between the planets is undoubtedly extremely cold. We have always supposed it to be entirely too cold for life to exist in it. But we laid little stress on the fact because we had no thought of any possible life existing there. But the discovery that seeds and spores can live uninjured through extreme cold has led to an interesting suggestion. This is that when the earth became adapted to the presence of life it was infected by germs transported on meteors from some other system. According to this theory, organic dust through space is ready to infect any planet which offers the conditions under which life may arise. Of course this theory does not When we find through scientific investigation how life arises we will simply know how God created it in the beginning. The next step in the understanding of early life is to study under the microscope the simplest forms which we can find in existence to-day. This, while far easier of execution than the problems which we have thus far considered, is still not without serious difficulties. But every day brings us nearer to the understanding of the structure of living things. Life the scientist cannot see. All he can study is living matter. Whether life can exist separate from living things is a problem outside the range of his, at least present, possibilities. Therefore, concerning it he has no answer whatever to give. But when we come to study living things we find that all life is associated Such simple cells can exhibit in very low form all the activities the higher animals show in much more elaborate development. A one-celled animal can move about, can recognize the proximity of food, can engulf its food and digest it, can build up its own substance out of the digested food, can absorb oxygen, If, then, we may form any judgment concerning the first living things upon the globe by considering the simplest creatures that live here to-day, certain facts seem clear. In the first place, life began in the water, and for a long time was only to be found in the water. Single cells are so small and dry out so easily that it is necessary to their existence that they should be kept entirely moist by the presence of water all about them. It is true many of them will stand drying, but while they are thus dried they can scarcely be said to be much more than just alive. They are utterly in The geologist tries as best he may to build up the geography of the earth in the past. He endeavors to judge from the rocks as he now finds them, where the seas, the bays, the dry land, and the mountains of earlier geological times lay. The present aspect of the earth is very recent, and earlier ages must have shown an entirely different distribution of land and water. The North American continent was certainly very much smaller than it is now. The first known lands lay close to the Atlantic seaboard and probably extended out into the water some distance beyond the present shoreline. The stretch of continent was narrow, and grew narrower as it went southward. In what is now the Canadian district, a considerable expanse probably existed in very early times. Then a great internal sea, shallower than the Atlantic, stretched its unbroken sheet over almost the entire area now occupied by the United States, while only a comparatively small hump of earth, ending in a narrower strip, lay where the great Western plateau now rears its enormous bulk. A large portion of the history of the North Amer How this great Eastern backbone of the continent was produced, what sort of animals lived while these rocks were being formed, or whether this preceded entirely the existence of life upon the earth, no man to-day may surely say. In the oldest of the rocks there are beds of graphite, from which lead pencils are made. This substance is believed by the geologists to be, like coal, the remains of vegetable life. But these early rocks have been so heated and baked, so twisted and bent, that whatever forms of life they once held are now obliterated, or so altered as to give us no idea of what may have been their character. So far as anyone can now see, this past history is wiped out forever and it will be impossible for men ever to demonstrate the character of this early life. Speculations, more or less certain, will arise. They The most striking feature concerning the earliest layers of rocks in which good fossils are found abundantly is the complexity of the life. With the exception of the backboned animals, every important branch of the animal kingdom is represented, and it is just possible that we have even earlier forms of the vertebrates themselves. This, to the evolutionist, is very disconcerting. To find the great groups all well developed at least twenty-five million years ago and to find only fossils built on the same lines since almost nonplusses him. When the geologist tells him what an enormous length of time preceded the rocks in which he finds these fossils and how absolutely these earlier strata have been altered by the later geological activities he easily understands why it is impossible to find fossils in them. As a consequence, the evolutionist is forced to believe that all the earliest animals have left no clear traces behind them. Life as he first surely knows it is already extremely varied and quite well developed in some of its groups. The early animals were as well adapted to the times in which they lived as are the great majority of the ani We start our study, then, at the period known as the PalÆozoic era, the era of the ancient life of the globe, beginning twenty-five million and ending ten million years ago. The first of the three sections into which this period of life is divided is known as the Silurian age, the age of invertebrates. The word invertebrate is an unscientific but convenient term under which we embrace all the animals below those having backbones. This period is called the age of invertebrates because, although there is an enormous wealth of animal and plant life in the Silurian, there are no backboned animals except the lowest kinds of fishes. It was supposed for a long time that even fishes were absent. Now we know they existed, but they were small and inconspicuous. In this period corals were wonderfully abundant, particularly in the great inter Those who are familiar with our seacoast will know an interesting creature known as the horseshoe crab, or king crab, though in reality it is not a crab at all. It is rather more nearly related to the spiders than the crabs, though no one but a technical zoÖlogist could possibly associate them together. The ancestors of these king crabs were the finest and best developed After these forms the most abundant fossils we find in Silurian times were creatures that at first sight looked as if they might be related to the clams. These are known as lampshells, because one shell projects beyond the other and curls up at the tip so as to resemble the clay lamps which are dug out of old Roman towns. The lampshells also have nearly disappeared in modern times. Simple creatures belonging with our present crab and snail had begun to make their appearance, but they were not as abundant as we find them later on. The third group of the mollusks to which the nautilus and squid of to-day belong is very abundantly represented in the Silurian by fossils with coiled-up shells. As for the plant life of the time, it is exceed The next period of the PalÆozoic is known as the Devonian age, or the age of fishes. Now the backboned animals first make their clear and unmistakable appearance. There are remains in the Silurian which show that there must have been a few fishes at that time. The Devonian is so full of them and they are so well developed and so diversified that this period is definitely known as the "age of fishes." They do not closely resemble the fishes of to-day, but anyone would recognize most of them for what they are. Their bodies were covered, not so much with scales as with heavy plates, often arranged like tiles, those on the forward half of the animal being often larger than those surrounding the rest of the body. The creature was encased, as it were, in armor. These were the rulers of the Devonian seas. The land, as yet, was probably nearly without animal life, the creatures thus far being almost confined to the water. A few insects make their appearance and a few thousand-leggers are running around among the lowly plants; a few spider-like animals have arisen; there are a few snails that have left the water and taken to the land. Altogether only the dawn of a land Now comes an entire change in the history of the world. By some means a rise in the bottom seems to have cut off a great part of the internal sea from the outer ocean and to have converted it into a widespread shallow bay, much like the sounds which lie back of the islands that line the Atlantic Coast from New Jersey to Florida. Just as this coastal region to-day is covered with salt marshes, so the whole internal sea of the Carboniferous period was converted into a great swamp. Sometimes an oscillation of the crust of the earth brought this marsh above the surface of the sea and a luxuriant growth of plants spread over it. Then a sinking of the bottom allowed the mud and sand to wash down the shores, and spread out over the marsh, and enclose the muck of the marsh under a layer of sand or clay. Another lift of the bottom would start the swamp growing once more, and a series of alternations between marsh land and sound seems to have followed. The plants of this period are not the plants of to-day, though we still have some very degenerate representatives of them. The common horse-tail, with its angular, All over the surface of the marsh, between these big trees, grew the ferns. While the coal itself was formed generally from the scalestems and sealstems, the most common fossils found in the shales that lie upon the coal beds are the ferns which covered the surface of the marsh. It is believed by many geologists that this great luxuriant forest points to a time when the climate was far warmer than it is to-day, when the air was moist and heavily laden with carbon dioxide, and when a great mass of clouds practically enveloped the earth. In this way only do most geologists account for the enormous wealth of vegetation in the Carboniferous period and for the abundance of plants up to the Arctic Ocean, of the kinds that now grow chiefly in the tropics. But of recent years a few geologists point to the fact that the peat bogs of to-day, which seem to be the beginnings of future coal deposits, are found almost entirely in cold countries. Hence it is a serious matter to attempt to describe The forests of the coal period seem actually to have cleared the air; at least now we begin to find creatures related to our salamanders and frogs moving about among the stumps of the marshes. These amphibians are evidently the descendants of some of the fishes of the Devonian times. Among these fishes were some which bear a great resemblance to a few found in South America, in Africa and Australia to-day, and which we know as lungfish. Anyone who has cleaned our fresh water fishes in preparation for the table will remember that inside of them there is a long slender bladder filled with air. This bladder assists in making the fish light, hence making it easier for it to support itself in the water. In certain swampy regions these lungfish swim freely in the water of the marshes. When the dry season comes, however, the water evaporates, draining the marshes completely. This would prove the death of most fishes. The lungfish have a curious habit which keeps them over the dry season. They cover themselves with a coat of mud, inside of which there is a lining of slime produced from their bodies. In such cocoon-like cases they survive the drought. The means by which they breathe during this dry season is inter We sometimes gain much light concerning the past history of any particular form of animal by studying the development of that animal in the egg, or, in the case of the mammals, before birth. It is an interesting fact that when the lung begins to form in the embryo it starts as a simple sac which is an offspring from the gullet, and occupies the position of the swim-bladder of the fish. This sac later divides into two, and develops into the lungs of the animal. This assures the zoÖlogist that the origin of the lungs in the higher animals is found in the swim-bladder of the so-called lungfish. In this Silurian time certain of these lungfish were perhaps trapped in the basin in the marsh by the uplifting of the border. The waters becoming progressively shallower and more crowded, these fishes took to the land, their fins developing into awkward limbs which slowly became more perfect. To state the fact in this simple fashion is to make it seem far less probable than is really the case. The At the end of the coal period came the greatest change the face of the globe had seen for many millions of years. Slowly the continent rose on both sides of the old interior sea. A great plateau formed in the region of the Alleghenies and another in the western district, though this latter uplift was to be completely washed away, and later to rise again into the Rocky Mountains and the Sierras. With the uplift at the edges of the continent came a steady rise of the internal marshes, until what had previously been swamp land became progressively first dry land and, in the western part, even desert, in that respect being somewhat like what it is now. The amphibians of to-day (animals like the salamander and frog) all lay their eggs in the water and their young have a tadpole stage. This doubtless was true of the amphibians of the coal period. With the beginning of the Mesozoic, or "middle life" period, a change and a progression comes over the animal world. The tadpole life of the frog is a rather Strangest of all, a considerable group of these wonderful reptiles lengthened their little fingers, sometimes to three or four feet in length, and had a skin stretched from these fingers over to the body in such a fashion as to give them wings not unlike those of the bat. In the wing of the bat, however, four of the fingers of the hand run through the membrane and support it. In the pterodactyl, as these flying reptiles are called, the middle finger supports the web, while the remaining fingers can still be used to clasp objects or serve the animal to lift himself, as the bat can do with his thumbs. Meanwhile an entire change is coming over the plant world. The last third of this age of reptiles is known as the Cretaceous or chalk period. Now, for the first time, the forests begin to take on more of Among the reptiles of the forest there appear to have been a few small creatures which to an observer of those times, if there could have been an observer, would have seemed of the utmost insignificance compared with their giant cousins. These little creatures climbed up into the trees to escape their enemies. There were some in whom the skin, in front of the elbow and behind the wrist, was loose, and stretched across the joint a little like the wing of a bat. This reptile, climbing into the trees to escape its enemies, found that this loose flap of skin served it nicely, and sailed out of the trees Still more interesting from our standpoint is another set of primitive animals, utterly insignificant in During this chalk period, which forms the last portion of the age of reptiles, life for the first time grew to look much as it does to-day. Now, apparently, the cold of winter and the heat of summer followed each other in regular succession. There have been colder and warmer periods at various times in the previous history of the earth, but undoubtedly they were more uniformly cold or uniformly warm than now. Ages were warm, or ages were cold, but now the earth clearly shows the annual alternations of summer and winter, and for the first time clearly shows the bands of climate on the earth which we know as zones. In the chalk period this new factor of cold works While there is no land mammal to-day as big as the heaviest of the reptiles in the Mesozoic, the whale, which is one of the mammals that has again taken to the ocean, surpasses in size even those gigantic creatures. There never lived in the world before a creature quite so big as the biggest of our whales. The next geological era is the Cenozoic, or period of modern life. This is divided into two quite distinct sections, the Tertiary and the Quaternary. This era began about five million years ago, roughly speaking, and is still going on. The greater half of it is known as the Tertiary. It was during this time that the mammals came to their own. At first these creatures belonged to what the scientist knows as generalized types. They are jacks-of-all-trades. The student of early animal life finds in the little Phenacodus, which was scarcely bigger than a good-sized setter dog, the beginnings from which many forms have subsequently developed. This creature showed points of structure which to-day may be seen in such diversified animals as the dog, the horse, the rabbit, and the monkey. It is not, of course, suggested that Phenacodus was the immediate ancestor of any of these. But there were no animals in those times more like these I have mentioned than was Phenacodus, and from forms like it in main features all of these other animals have since been derived, each species of animal having become adapted to one particular kind of life. The development of diversified situations on the With the increased complexity of mammals comes the submergence of the reptiles and amphibians to-day. In all sorts of situations we find mammals. The old-fashioned continent of Australia is separated from everything about it by deep water, impassable to any animal which lives upon it. In this secluded country evolution is very slow and animals are very antiquated. We still find there mammals with the ancient habit of laying eggs in a hollow in the ground, though after these eggs are hatched the young are nursed on the milk of the mother. But on the great continental stretches, where competition is keen, where the animal must battle for his life against a wide field of other animals, where migration into new situations is possible, the rapidity of the development has been very much greater. It is in such a situation that man has arisen. In the extreme southeastern portion of Asia, and on the islands lying close to the coast, his highest non-human relatives, members of the ape family, have reached their best development. These, of course, are not man's ancestors. They are the less progressive members who are left behind entirely in the race. Many scientific writers to-day take it for granted that one form, discovered in Java, while it may not be in the absolutely direct line, must be very close indeed to the line of ascent toward man out of the apelike forms. A scientist by the name of DuBois, working in the banks of a stream in south-central Java, found a thigh bone which seemed to him exceedingly human in its general character and yet not absolutely like the human thigh bone. The oncoming of the rainy season raised the water in the river so that DuBois could not continue his search. Returning a year later, and digging back deeper into this bank, he found a skull cap and two molar teeth which seemed to him to belong to the thigh bone, although they lay several yards farther back, but at the same level in the bank. When these bones were subsequently presented to a meeting of European scientists by DuBois, he claimed to have found the "missing link" for which there was so eager a demand. Some of the best anatomists of the meeting, notably Virchow, laughed at his claim and said that the skull cap was simply that of a human idiot, and could be duplicated in any large asylum. This so-called "Java find" is known in science by the name of Pithecanthropus, which means the ape-man. Whether we look upon this fossil as a serious find or not, it is very certain that in the caves of Europe belonging to the Quaternary period we find abundant evidences of primitive man. The older these evidences are, the more likely they are to be distinctly below the grade of man of to-day, in the size and shape of the brain case and in the length and massiveness of the jaw. There are probably more races than one represented among these skulls. Some of them are surely well-deserving of the title of low brow. Their heavy ridges over the eyes, their small foreheads, their massive, heavy-set jaws show a race of men far less endowed mentally and much better endowed in the The whole question of the descent of man from the lower animals, or his ascent from them, as Drummond aptly termed it, is to most people so entirely repugnant as to set them at once, and finally, against all willingness to consider the question of Evolution. This, however, does not solve the problem. Even though truth be horribly unpalatable, it is still to be believed if it is only the truth. There is practically no doubt left among scientific men of the origin of man in lower forms. The evidences grow more and more complete year by year, and from every line of investigation. Whether we study his anatomy, his embryology, his history, his language, or his civilization, all indications point in the same direction. Constant discoveries indicate the fact of an enormously long development from a very humble form. If this proves to be true and remains unpalatable, the fault lies in the palate and not in the truth. Gradually we are coming to understand that there is no reason why this truth should be unpalatable. We consider a rise CHAPTER VIIHow the Mammals Developed When the idea of evolution first began to be much discussed, especially after the publication of the "Origin of Species," there were several points which appeared to be more than commonly difficult of explanation. It did not seem impossible that the various types of domesticated cattle should have descended from a common ancestor. It did not seem difficult of comprehension that the dog might once have been a wolf. Though not quite so credible, it did not seem absurd that the tigers, lions, and leopards should have once all been alike. The resemblance between these are strong enough to make the idea seem conceivable. Though men were willing to concede this much, they insisted that the great branches of the animal kingdom varied so widely from each other as to make it certain that each was a separate creation. It was particularly objected that the mammals differed so entirely from other animals in several important particulars that a special divine act was necessary for their appearance. The mammals have a furry cover Other young creatures are produced from eggs laid by the parent and subsequently hatched. The young of the mammals are born alive and comparatively well developed. In addition, their first food, the milk of the mother, is so entirely different from the food of any other creature that this again seemed to involve a separate creation. Gradually we have come to understand the whole matter of reproduction very much better. Minute and careful dissections of rabbits, of dogs and cats, of animals slaughtered for food, with occasional post-mortem examinations of human beings in various stages of the development of the young, leave us no longer in doubt concerning the main features of the process. The better we come to understand it the more clearly it becomes evident that in the development of the mammals we have no new procedure, but, as in so many other activities, new developments of an old process. There are two entirely different methods by which new animals and plants may arise. One sees some In similar fashion, if one wants a particular kind of apple, he never trusts to planting an apple seed. Going to the tree of the variety he desires, he takes from it a small twig provided with a bud and inserts this bud into a cleft made in the young branch of another apple tree. The young bud so inserted starts up into a new branch, resembling almost absolutely, not the tree which feeds it with sap, but the tree from which the bud was originally taken. When we wish a particular variety of potato we obtain pieces of the potato of the kind we desire. Each of these must contain an eye, which is a bud of the old potato. When the sprout appears the new plant will be practically identical in character with the plant from which the potato was taken. This sort of reproduction, in which a piece of the old parent grows up into the new generation, is called the asexual method. But one parent is concerned in the process, The gardener who wishes to obtain new varieties is not content with this method. If he plant the seed of the potato the outcome will be most uncertain. His seed must be taken, of course, from the fruit of the potato, and most of these plants never fruit. Every grower of large quantities of potatoes will have noticed occasionally, on the tops of the plant, after the flowers disappear, a globular growth looking not unlike a small tomato, but with a tendency to become purplish green in color. This is the fruit of the potato and in it are the seeds. When these are planted all sorts of potatoes are liable to start up. Most of them will prove worthless. An occasional seed may produce an uncommonly fine plant. This new variety may thereafter be propagated from the tuber, as the potato itself is called, and the new strain will be kept constant in this way. This method of using the seed for reproducing the plant is called the sexual method, because two parents coÖperate in the production of the seed. The pollen came from one parent and the ovule, which after fertilization swelled up into the seed, came from another. By this combination of two individuals new varieties become quite possible. Nature seems to be more concerned in improving her strain than in maintaining her older strains. In all In order that we may the more clearly understand how the mammals produce their young and nourish them, we shall begin at the lowest class of the backboned animals and note how the process is there accomplished. As we pass upward through the kingdom the method acquires greater complexity. When we finally reach the mammals, what at first seemed an absolutely new process will prove to be, as is all of nature's work with which we are thoroughly acquainted, but a modification and an elaboration of some previously existing process. Some time ago I was passing the early months of summer by the side of a lake in northern Pennsylvania. Near my tent, on the edge of the water, was a wharf from which it was possible to look down into the shallows about the edge of the lake. In early July the bottom began to take on a strange appearance. Spots as big as a dinner plate became evident because they were cleaned of the finer sand or mud which is common on the bottom. A close examination showed that each of these circular spots was Fish are stupid almost beyond the comprehension of those who are not students of the minds of animals. Frogs and toads are a distinct step in advance, and hence their mental activities play a larger part in the process. In the love-making of the frogs and toads the song has an important share. In each species the voice is a little different from that of any other. In our familiar garden toad we have an excellent illustration of the method common to the entire group. When spring comes an impulse seems to stir in all the toads of a neighborhood. Heretofore they have stuck faithfully to dry ground; now they start off for the water. Whether their impulse is simply to move down hill or whether they by some means detect the near presence of water, I cannot say. Certainly a new fountain on a lawn will secure in spring its prompt and full share of the neighborhood's toads. In any event the toads of a district congregate in great numbers in any pond or along the edge of any moderate stream. Within a short time their flutelike, quivering voice is heard far and wide. That this note has an attractive power over the female there is no doubt. She herself makes no effort to imitate, but the song of her mate is persistent and exceedingly Altogether a higher state of reproduction is encountered when we reach the reptiles, which are the If the evolutionist understands properly the line of descent, the birds and mammals are both the descendants of the reptiles. While there is less exterior resemblance between a chicken and a turtle than between a cat and a turtle, the real relationship in the first case is much closer than in the second. This is perhaps most easily seen in the scaly legs of both bird and reptile. Another remarkable resemblance lies in the fact that in both cases the eggs are large, well stored with nourishment, and protected by a resistant shell. So few people know the turtle's egg that it will be better to describe that of the hen, which it largely resembles. Underneath the hard shell is a tough but flexible membrane which lies against the limey coating, except at the blunt end, where a separation between the two gives room for a bubble of air. Inside of this shell and its membrane lies the white of the egg, which is nourishment for the chick, though not nearly so rich as the yolk. This, besides the albumen which it contains, is stored with large quan This embryo is so soft that it is almost like curd in thickened milk, and could be very easily destroyed were it not for a protective device which Nature has employed. It seems necessary that it should be protected with the utmost care. The matter will be better understood if we recall a common experience. Every living creature requires a constant supply of food and of oxygen. The embryo is a living creature, and is no exception to the rule. It needs an abundant supply of easily assimilated food and of oxygen. When the hen's egg is first laid the entire contents, with the exception of the little light- As yet, we have seen no arrangement for furnishing air to the chick. At the same point at which the blood vessels from the yolk enter the chick, another set of vessels pass in and out. These are attached to a large flattened bag which floats above the embryo against the upper side of the shell. This bag is called the allantois, and serves as a sort of lung for The embryo thus enclosed in the egg finds its protection in the fact that it is encased in a fluid contained in the amnion. It draws its nourishment from the yolk upon which it lives and the nourishment is transmitted to it by blood vessels. It draws its oxygen and throws off its wastes through the instrumentality of the allantois, which covers it over. Day by day the chick becomes larger, day by day it grows to look more like what it is to be. By the nineteenth day it appears to be complete. Its nervous organization is, however, not thoroughly developed. If removed from the shell the chick still is indisposed to stand upon its feet or to run about. If allowed to remain in the egg until the twenty-first day, the chick will be able to push its beak through the skin enclosing the bubble of air at the blunt end of the egg and get the first breath into its lungs. Now it gives a I have given this somewhat lengthened description of the development of the chick because of the light it throws upon the method pursued by the mammals. The features which have been described in the case of the chicken's egg could be as fully observed in the case of the turtle or any of the other reptiles. Mammals are descended from the reptiles of the Mesozoic, and whatever peculiarities there may be in their method of producing their young must be derived from the reptiles. If we wish to know how the earliest mammals produced their young, we can only judge by the lowliest members of the group that live upon the earth to-day. The most primitive of these is the so-called Duckmole, of Australia. This little creature has habits not unlike those of the muskrat. It burrows in the bank of a stream, and makes a nest at the end of the burrow, where it lays its eggs. This is one of the very few warm-blooded, hair-covered animals which still lays eggs. A little higher in the scale stand the kangaroo and the opossum. These creatures keep the egg inside of the body until it is hatched. But this happens in so short a time that the young animal is exceedingly immature and as yet unable to stand the outside air. Accordingly there is a double fold of skin on the abdomen of the These creatures are the lowliest of the class upon the earth. The great majority of all mammals have elaborated a far finer plan, in which the young are retained within the body of the parent until they are quite able to stand the air. The length of this time varies in different mammals from a few weeks to more than a year. The egg must be fertilized before it leaves the body of the parent. If it should fail in this it simply passes out and is wasted. If the fertilizing cell reaches the egg before it has progressed far down the tube it begins its development. The embryo forms for itself the sort of head and tail and gill slits which would have served its fish or its Around the embryo there forms a sac, the amnion filled with a fluid which serves to protect the young mammals exactly as the growing chick was protected. Under the forming creature there hangs a small but empty yolksac. This is an actual remnant, a reminder of the past, when the eggs of the mammals were also packed with yolk and the growing embryo secured its nourishment exactly as does the maturing chick. But a new method has been provided for the mammal, and consequently the yolksac, though it has not entirely disappeared, has no nutritive content for the growth of the embryo. The allantois of the chick now gains a new development and an altered function. In the case of the chick it floats against the shell of the egg and absorbs oxygen through the shell. Inside the body of the mammal this is impossible, because the air is too far away. No shell is formed about the egg because it is not to be laid. The tube of the parent's body in which the egg lies becomes thickened at the point of contact with the egg. It grows spongy and full of blood vessels. Meanwhile the allantois is also growing spongy. These two tissues are so closely pressed against each other that the blood vessels of the trans Thus far we have spoken of the change in the method by which the young are brought to such a stage of development that they can stand the outer air. One of the improved differences between the mammals and other animals lies in the method by which they nourish their young for some time after birth. The very word mammals signifies an animal who is in the true sense of the word a mamma. This name for mother is given to her because of the fact that she possesses what are technically known as mammary glands, or, in simpler language, breasts. It A part of an animal's body that has the power to gather material from the blood and pour it out in the shape of fluid is known as a gland. Sometimes a whole organ does nothing else. Sometimes small glands are scattered through, or over, the surface of another organ. There are two kinds of glands in the skin of the mammal. The best known and most frequently thought of are those which pour out the perspiration. These have a double function. In the first place they assist in keeping the temperature of the body uniform. When we are too warm they pour out a watery fluid over the surface of the body. If the air is dry enough and our body not too closely protected by clothing, this perspiration passes off in the form of vapor. All evaporation requires heat, which in this case is extracted from the body. So soon as the temperature returns to its normal level the flow of perspiration ceases. The other function of the sweat glands is to take from the blood some of the waste matters of the body and pour them out upon the surface. This is done in order that the body may free itself from substances which, if they were to accumulate, would have a poisonous effect upon There is another set of organs in the mammalian skin. At the base of each hair lies an oil gland. The function of these is to pour out a substance which spreads along each hair and over the surface of the body. The outside of the skin is always dead, and would easily crack were it not for the constant secretion of this oil. In winter, when the blood circulates less freely and these glands consequently pour out less oil, the supply frequently runs short. If what little is poured out is too frequently removed by washing, the skin becomes brittle, and, on bending a joint, the epidermis cracks. The gloss of the hair is due to the oil thus poured out. This oil becomes one ingre The milk glands of the mammals are modified oil glands. The fluid which they now pour out is no longer exactly the old oil with the addition of the lymph. Undoubtedly in the past the first milk was more like this simple mixture. There seems no doubt that the breasts of to-day are the enlarged and modified oil glands of earlier mammals. In one of the most primitive of our mammals the young simply lick certain bare spots on the surface of the mother's abdomen. As higher forms arise there develops a smaller or larger mound with a distinct projection, about which the lips of the offspring can easily fasten. Lamarck would have said that the suction of the infant had produced such a mound, and that this had been transmitted to later offspring until it had grown to be the highly developed organ we now find, for in It is interesting to notice that the habit of the elephant of protecting its young by means of its tusks has also resulted in a similar position of the milk glands. The new plan of caring for the young is one of the priceless heritages of the higher animals. As we rise in the grade of life the number of the young produced at one time steadily diminishes, while the care spent upon them increases. The shad may lay four hundred thousand eggs and trust them entirely to their fate. The sunfish will lay a thousand, by no means all of which can be fertilized, but it guards them somewhat after deposition. The toad lays several hundred, stores them with a considerable amount of nourishment, and protects them by a bitter deposit of mucous. The turtle has reduced the number of eggs to perhaps a score. Each of these is supplied with abundant nourishment, so that the young may develop to considerable size and activity before emerging from the egg. This material is enclosed in There is, however, a more wonderful advantage that comes from the close attachment between mother and offspring. This intimate relationship brings about an affection of the mother for her young heretofore unknown in the animal world. It is somewhat CHAPTER VIIIThe Story of the Horse Ever since men have been familiar with the idea of evolution there has been a temptation on the part of the zoÖlogist to draw up pedigrees expressing the relationship between the various groups of the animal kingdom. The impulse is natural, and, if the resulting tables are not accepted with too much confidence, the result is not undesirable. The truth of the matter is that all of these pedigrees are more or less hypothetical. They simply show what connection seems most likely. In all of them are spaces filled with doubtful names. Each addition to our acquaintance with the past history of animals necessitates revision of our tables. The student of fossils, trying to rebuild in imagination the world of the past, finds himself often strangely unable to link these animals together. The result is that the more we know of fossils, the more distrustful we become of the easy connections we have been making between groups. Accordingly we are more than commonly pleased when we find the clear indication of a genuine pedi In the table of Geological Times, given in chapter six, the era of recent life known as the Cenozoic is seen to occupy something like five million years. This figure, as was previously suggested, is very uncertain, and may be three or may be six, but is safely represented in millions. Through most of this time stretches what is known as the Age of Mammals, the When we go back to the early Tertiary we find a forest, with trees that shed their leaves, interspersed with glades, in which already the grasses were beginning to be developed. This state of affairs had existed but for a comparatively short time, geologically speaking. It had come only in the latter part of the preceding era. Lake and swamp, meadow and forest intermingled to make a rich and varied scene. Slowly the land toward the western side of North America lifted itself into plateau and mountain range. Slowly the westerly winds began to be cut off by the barriers thus raised across their path. As they swept over the plateau and down into the eastern plain their moisture came to be diminished. Gradually a very different state of affairs set in. The ground became harder, the forest became sparser, the plants became higher and firmer, the grasses tougher and more wiry, and, by the time the Quaternary arrived, a condition probably even drier than that of to-day existed over our western highlands. Throughout this long change, spread over millions of years, a creature which has become our horse steadily persisted THE EVOLUTION OF THE HORSE'S FOOT The earliest of the forerunners of the horse with which we are acquainted would certainly not be recognized as such by any but the most careful student of We can only surmise why this creature should have undergone such a change, but the presence of flesh-eating animals having the size of a fox, and presumably of the fox's swiftness, probably tells the story. The little bands of early horses, pursued by their carnivorous foes, were slowly modified into swifter creatures. It is not so much that running made them fast, as that the slow ones were continually being caught. If this process of constant elimination of the slow members of any herd is kept up long enough, the group will necessarily develop speed. As time goes on, of these early horses those which happened to have longer legs and stood higher upon their toes won in the race, and handed on their qualities to their long-legged descendants. As the animal rose upon his toes, the inner toe, corresponding to our With increasing toughness of the grasses, as the climate becomes drier and the region more elevated, the teeth of the horse are given harder work. The points begin to spread into ridges and to unite with each other in such way as to form the crescents, which are later to be so characteristic of the teeth of the modern horse. By the middle of the Tertiary this ancestral horse has risen in height until he is taller and heavier than a setter dog. Three toes are found on each front foot. The middle toe is getting constantly more developed, though the smaller toes are evidently still of use. The ridges of the teeth are quite crescentic now on the outer side, and becoming better adapted to the evidently firmer food which the creature is obliged to eat. As we come toward the end of the Tertiary, the de The late Tertiary horse has grown to be the size of a burro of to-day, though probably it was a little more slender. The teeth are quite horselike, both in shape of the crescentic ridges on their surface, in the length of the teeth in the jaw bone, and in the fact that the crinkled edges of enamel on the upper surface are protected on either side by dentine or by cement. These surfaces, being softer than the enamel, wore away somewhat more rapidly and allowed the sharp edges of enamel to stand up in ridges. This plan increases the grinding power of the teeth. With the oncoming of the Era of Man the horse The mammalian teeth, while of four kinds, really in most animals serve but two purposes. The front teeth consist of the incisors and canines, and are used for biting. The hind teeth, consisting of premolars and molars, are used for grinding. In the horse, the jaw has lengthened between these two sets, carrying the biting teeth far forward of the molars. It is this Now comes a strange accident into the life of our American horse. Creatures of the same kin had been evolving in Europe and Africa, but the developments are more distinctly horselike, it would seem, in our own country. Then for some reason the horse disappeared completely from American soil. Doubtless two things happened. First of all, some of them migrated across a stretch of open country which then connected America with Asia in the neighborhood of Bering Strait. These creatures spread first over Asia and then over Africa and Europe, leaving their skeletons scattered over this enormous stretch of country. Asses and zebras are still found abundantly and widely scattered, but the wild horse of to-day is seen only in western Asia. What happened to those who remained in America we shall possibly never know. Some surmise that a fly not unlike the tsetse-fly of Africa killed them out. Perhaps the members of the cat family, which are steadily growing larger and fiercer, fed on their young if not upon the older ones, and exterminated them. Perhaps the Glacial period which followed was too cold for them. But, whatever may have been the cause these horses died out not only in North but also in South America, to which country they had spread. CHAPTER IXEvolutionary Theories Since Darwin In considering the value of Charles Darwin's work and its permanent effect upon the thought of mankind, we must be careful to distinguish between two phases of his effort. It was his aim to prove two propositions: first, that there is such a process as evolution; second, that he had discovered the method by which evolution is accomplished. Before his time there was no general agreement as to the fact of evolution. People generally thought the idea absurd, as well as irreligious. All previous efforts on the part of advanced thinkers to persuade mankind of the truth of evolution had been nearly without effect. Among the early philosophers the whole idea was purely speculative. They made no attempt to prove it, and the conception was without influence upon the thinking of the ordinary man. This remains true until the time of Lamarck. This French genius succeeded in persuading not a few people of the validity of the idea of evolution. He probably could have convinced many more had it not been for the hostility of Cuvier. The other phase of Darwin's work was his attempt to find the agent which is bringing about the actual transformation of animals and plants. As we have seen in the preceding chapters, it was his idea that natural selection was the efficient agent which constantly eliminated all unfit variations, leaving only the best to carry on the work of the world and to repro Weissman and his co-workers have contended that this unaided principle will serve. Most biologists have asked for some more efficient cause, and assert that selection does not account for the appearance of variations, but only for their preservation, and that any valid theory of evolution must show how variations originate. It is chiefly in this respect that Darwin's work has failed to satisfy many later biologists. When we hear a scientist speak of Darwinism as being dead, this is what he means. He does not think evolution false, but believes that Natural Selection is not sufficient to account for evolution. There are three main difficulties involved in Darwin's theory. The chief defect lies in the fact that selection cannot originate varieties. In all his earlier works Darwin simply accepted variations as he found them. He was content to say that all species varied constantly, and in every direction. He gave no theory to account for variation. Whenever he took measurements of the dimensions of any large series of objects of the same kind he found these measurements to vary, apparently, in all directions. Upon the facts of these variations, This theory of Pangenesis, in the shape in which There is a school of biologists, headed by Weissman, who have come to be known as Neo-Darwinians. These men have insisted that Natural Selection, if properly understood and developed, is quite sufficient to account for the fact of evolution, including the appearance of variations. Weissman himself is a microscopist of more than common skill. He is thoroughly accomplished in the most modern methods of killing, fixing, staining, and mounting. This worker's acquaintance with the intimate structure of the cell is probably as great as that of any other man in the world. Weissman asserts that he has seen inside the nucleus all the machinery necessary to explain how the father hands over his qualities to his children. He insists, equally strongly, that this process is such that no father can hand to his child any qualities which he himself did not have at least in potentiality at his birth. Everything the individual acquires during his lifetime is his own possession, which he may use and develop to the utmost extent, but it dies with him. His children, born after he possesses it, can no more inherit it than those born before. Weissman expressed this in his famous statement that "There is If what Weissman says is true, that no variation or development which comes to an animal during his lifetime can be transferred into his own germ cells and handed on to his children, then it becomes evident that we must find some cause of variation that acts within the germ cells. This is the difficulty which Weissman meets. He says that there are small particles in the nucleus of each cell; that these particles which he calls determinants decide the form and the course of development of that cell; that when that cell divides to produce another cell it gives to this other cell one-half of each determinant. As a result the second cell grows to be like the first. This tells us why offspring are like their parents. There is nothing in the theory thus far to show us why offspring are not exactly like their parents. In other words, there is no accounting, thus far in the theory, for variation. When the biologist studies carefully the history of an egg while it is being formed, he sees that at one stage in its development it throws away not one-half of each determinant, but one-half of the determinants. When an egg does this, it deliberately casts aside one-half of the possibilities of its own de There is, however, another possible cause. Each cell has enough determinants in it for many individuals, and it seems to be more or less a matter of accident which qualities shall come out. It has been suggested that as an egg lies within the gland, a blood vessel may bring blood to it in such way that a determinant, lying in a certain position in the egg, may get the richest supply of blood, and hence develop at the expense of the less nourished determinant. By these two methods variation comes into an animal's life, if Weissman and his school are to be believed. This is a serious blow, if true, to many theories of evolution. The great mass of evolutionists still feel Whether men with this conviction are merely reactionaries whose confidence is returning, or bold thinkers whose views will ultimately prevail, time alone can tell. A second strong objection was brought against the theory of Natural Selection. Darwin declared that small variations in favorable directions are selected and become the starting point of new and better things. It is soon seen, however, that the effect of unaided Natural Selection would be but to mix new It was Moritz Wagner, a German naturalist, who first insisted that if favorable variations were to amount to anything these possessors must not only mate with others of their same kind, but must also be prevented from mating with the old average group. Accordingly, the belief arose that, under ordinary circumstances, variations returned to the common level. Wherever a varying group became separated by any barrier from mating with the rest of its species, and had only its own kind to pair with, a new species sprang up. This barrier might be a desert, or an impassable mountain range, an arm of the sea, or anything else that the animal could not, or would not, cross. Isolated in this way, the little group that had an advantage in a different direction could develop its tendencies, and a new species would be made of what had been previously only a geographical race. In this matter of geographical isolation Wagner is very strongly supported by the George John Romanes, a British naturalist, has added to Wagner's idea of isolation, the expanded conception that there may be isolations that are not geographical. For this phase, Romanes has coined the term physiological isolation. Something in the structure or habit of the animals with the new variation prevents them from mating with the older type. Occasionally it is a difference in the structure of the reproductive organs themselves. This, however, is not the only possible divergence. The mating season in one group may come earlier than that of the other, or may come during the day, while the main group is in the habit of mating at night. Anything which keeps some members of a species separate in their mating from the rest, will result in the course of a longer or shorter time, says Romanes, in the formation of a new species. A third great objection was raised against Darwinism. The theory said that only useful variations were selected by nature. It was asserted by objectors It has been noticed by a number of naturalists that certain animals seem to carry the development of a peculiarity altogether too far. It is seen for instance that in the Irish Elk, which has for some time been extinct, the horns were so enormous as to be a source of danger rather than of assistance to their owner. It was said that the tendency to produce heavy horns had gained, as it were, a sort of momentum, and that this impulse had carried the development beyond a safe limit. The Irish Elk became extinct because his horns were too heavy. During the Mesozoic period the reptiles grew too large. They seemed to have carried size to a point at which it became a danger instead of a help. They completely passed out of existence, leaving behind them only very much smaller reptiles. Eimer, of Germany, has based on facts like these his theory of Orthogenesis. He says that variations in animals are not indefinite and in every direction, but that they follow along clear and definite lines. These lines, in the case of the elk and of the Mesozoic reptiles, developed too far, but ordinarily the effect of such a tendency is distinctly beneficial to the animal. It particularly assists in carrying on for Both in America and France there is a constant tendency on the part of zoÖlogists to return to the Lamarckian idea that it is the use of an organ that develops it, its disuse that makes it fade away. This is undoubtedly true of the individual, and although Weissman insists that it is useless to the species as a whole, many zoÖlogists are slow to relinquish entirely the idea that somehow these favorable developments become reproduced in the offspring. Professor Cope, the American paleontologist, was a strong believer in the effect of activity, both upon the individual and upon his descendants. He believed that the insistent beating of the foot of an animal upon the hard soil of the drying Tertiary plateau, had influenced the production of a firmer nail, which spread around the entire end of the toe and made the hoof of the ungulate. He believed that the use One of the strongest objections to Darwin's idea of evolution by natural selection of small and favorable variations, is that the process is too inconceivably slow to account for the enormous progress which has been made. The answer has always been that our Hugo DeVries, of Amsterdam, believes he has found the answer to this difficulty. Outside of his botanical garden an American species of Evening Primrose had run wild. In looking over a number of these plants he found, every here and there, certain peculiar members of the species. They differed noticeably to the practiced eye from the rest of the group. When they were planted and crossed with each other, and the resulting seeds were again planted, the peculiarity remained constant in all the members of the collection. Here then we have a true variation, not large in amount, but at the same time quite definite, and which from the first remains true. Here are the beginnings, says DeVries, of new species. They are true from the first; they can live among other members of the species and still come true; they do not need isolation, at least in Wagner's geographical sense. These forms DeVries calls mutations. It is his thought that a species may run along uniformly for a long time when, from some cause This theory of Mutation has been eagerly seized upon by many botanists. The zoÖlogists have not accepted it quite so enthusiastically. If this is the chief method by which species transform, it seems strange that we do not find more mutations than we do. Perhaps we do not look carefully enough; perhaps we shall find them a little later. Just at present it seems premature to believe that all evolution is by mutation, although quite possibly some of it is. The main apparent advantage of mutation is that it hastens the time in which a new species may arise. There are certain difficulties which run back into the problem, and which must first be reasonably solved before a clear understanding of the idea of evolution is possible. The first of these is as to the nature of life. What is life? The reply of the biologist will probably be that so far as its material side is concerned, it must be answered in terms of physics and chemistry. As to any side not material, if it have any such side, science says that the chemist can have nothing to say. The chemist may have an A few scientists may hope dimly that this will be attained. I suspect a great majority believe it to be impossible, and that the question as to whether life evolved upon this planet, or this planet became infected with life through meteoric dust from some other center, will forever remain an unsolved problem. CHAPTER XThe Future Evolution of Man The disturbance of mind created by the publication of Charles Darwin's "Origin of Species" would have amounted to nothing if the theory had been applied to the lower animals alone. Few people would have disputed that a cow and a buffalo had descended from the same ancestor, or that monkeys and apes were of a common blood. The whole theory would have been looked upon by those outside the biological world as entirely an academic question, in which they had little concern, and less interest. But within this century the scientist has so persuaded the world of the unity underlying the activities of the universe, that so soon as a principle is established men begin to run it out to the very end. Everyone knows perfectly well that if it could be proved that the dog and the horse had a common ancestor, still more if it could be made apparent that the dog and the frog and fish had sprung from the same stock, then there could be no question of what would be the final application of the theory. Man himself could be no What is the origin of man? Who are his ancestors? As soon as we ask the question there is no doubt whatever as to the answer, if we accept the principle of evolution. Our only means of judging relationship between animals is by the similarity of their structure. As soon as we come to examine the other creatures even in the most cursory fashion, there is only one group which in any close degree resembles the human species. Our nearest relatives among living animals must undoubtedly be the apes. Some little distance farther away stand the monkeys, and, structurally speaking, there is more difference between a monkey and an ape than there is between an ape and man. The gap between man and his relatives of this group, known as the primates, is a mental, not a physical one. While his brain and his mind have developed far beyond theirs, the rest of his body is comparatively close to that of an ape. Probably no one can face the possibility of his being descended from creatures not unlike the ape, without feeling a stirring sense of repugnance. The least aristocratic of us hesitates to name in the line of his ancestry creatures so unlike himself as the members of this group. It seems to us impossible The question of course is not to be decided by our likes or our dislikes. If the evolution of man is true it will not make it less true because the process is not to our liking. It is our part, if this be the truth, to accept it as we do any other truth. Surely those of us who are moral of thought are not willing to disbelieve a truth because it is unpleasant. The newness of the idea is the chief reason for our dislike of it. This lowliness of origin should not be distasteful to us. Nothing about Abraham Lincoln seems to us more wonderful than that a man who towered head and shoulders above his generation, indeed above most generations of men, in his fineness of life, in his nobility of purpose, in the integrity of his aims, should have been of ex That the greatest military General on the Union side of the Civil war should have been the son of a country tanner, and as a boy, not over-shrewd in the matter of bargains, adds to the glory of his later life. The simplicity of his childhood gives new luster to the power with which he led the forces of a nation to victory, and then went to a battle no less noble in his long fight for honor while suffering from disease and approaching death. Why then should we feel that such beginnings in the lower world are too humble for man? Why do we think his present superiority diminished by his lowly origin? Why can we not see that precisely the reverse is true? The more humble the level from which he sprang the more gloriously creditable is his present position. Instead of being ashamed of having risen from the brute, it should be the glory of man that he has so sprung. His chief superiority lies in the fact that while they have remained where they are, he has so completely outdistanced them as to have placed a gap between himself and them that seems almost The evolution of man's physical frame probably has nearly ceased. Gradually organs that are useless to him are passing away. Slowly his hands are becoming more delicate and refined and skilled. But his evolution has begun to work itself out on entirely other lines. We sometimes hear that the men of the past were the full equivalent of the men of to-day. Scholars like to tell us that the population of Athens was finer in quality than any population that has existed since. We must remember that group after group of men may be expected to specialize intellectually and fail to develop morally and physically. Under these conditions this little branch of the human race runs through its forced flowering and comes to an end. With the study of history and the earnest investigation of these lives of the past, new possibilities arise within the human family. The next race that flowers may take longer to decay because it understands better the weaknesses that carried away the preceding civilization. In time there will arise a civilization that understands the past. A whole people will some time realize that intellectual development alone will not save it, or Athens If anyone doubts that English speaking people are becoming cleaner of life he needs only to consult the literature of the past. No one dreams of finding fault with Chaucer because his stories related in the company of men and women often would not bear such telling to-day. Shakespeare, with all his wonderful genius, needs expurgating if one would read him aloud comfortably to a mixed audience. And these are the shining stars. When we drop Under the change from country to city life man has suffered. Here too evolution is necessary. City life tells hard on the second generation and nearly destroys the third; but we have come to understand the difficulty and are fast remedying it. It is more than possible that the next generation will see such changes in the life of the worker in the great center, as shall effectively stop the physical deterioration that has come to the city dweller. God grant that modern civilization has had teaching enough and learned its lesson well enough. God grant further that we may give over slaughtering our most ambitious and vigorous young men in battle to settle In the early history of the evolution of man the struggle almost always concerns the individual. Gradually the family comes to be the fuller unit. Only that is success which leads to the success of this higher group. After a time the family broadens to the tribe, and then the tribe to the nation. The evolution of social institutions is at present going on at an enormously rapid rate. Throughout the civilized world democracy is coming to its own. Even where the form of monarchy still prevails, the sub Any individual human being is a network of traits and peculiarities. He has all the ordinary attributes of humanity, but to the whole complex he gives an individual peculiarity which is totally his own. Where did he get his qualities? In the earlier times the fairies were supposed to have blessed him or cursed him in his cradle. A later age saw in the stars the rulers of man's destiny. He was jovial, or saturnine, or martial, depending on the planet which was in the ascendant at the time of his birth. Now we know "it is not in our stars but in ourselves that we are underlings." Everything a man is comes to him from within or from without; from nature or from nurture; from his heredity or from his environment. From our ancestors we get all the possibilities of our lives. To a certain extent we are slaves to our heredity, but not by any means to any such extent as to make us hopeless, unless our heredity is miserably bad. To the great mass of us come larger potentialities than we ever develop, and such Inasmuch as all that is in man comes from his environment or from his heredity, the only way in which the race of men can be advanced is by improving their environment or by bettering their heredity. The first of these is the province of the sociologist; the second that of the eugenist. The sociologist has for some time been giving his careful attention to the improvement of the environment. In every large city, a man must build for himself a house fit to live in, if he build it at all. Whether he erects it for himself or for another makes no difference. Society will no longer allow him to build a home which is a detriment to the one who lives in it. Not only must he make himself a decent home but he must keep it in decent condition. The community will not allow him to endanger his own health, or that of his neighbor, by an insufficient method of attending to his garbage, or by a lack of ordinary cleanliness. If he will not clean his premises himself, the law sees to it that they are cleaned for him. Already we are beginning to understand that no man has a right to employ another man or woman or child at wages which are not sufficient to maintain the one thus employed. The wages of many people are exceedingly meager, notably those of women and children. He Under such circumstances is it to be wondered at that the eugenist is hoping to raise the strain? Any improvement he can bring about is not only valuable for the generation in which it comes but is carried on into the generations which follow. This is the hope that strengthens and sustains him in his effort. The science of eugenics is so new, so little is surely known concerning the transmission of human characters, that Heretofore our efforts at improving the strain have been confined to cattle, chickens and plants. An almost unalterable repugnance rises as soon as we speak of improving the human strain. Visions, if not stories, start up at once, of experimental matings of human beings, and of all other unspeakable abominations which no decent man expects to happen or even wishes to attempt. If there is one thing in human society the value of which has been demonstrated through the unending ages, it is the monogamic marriage. All ideal workers must point to the life-long union of a strong, vigorous, clean-minded and clean-lived man with a similarly fine, strong, clean-minded and clean-lived woman. Such an ideal may be slow in its attainment, but he aims too low who aims to secure anything less than this. The long struggle out of bestiality into pure monogamy has been so slow, so gradual, so noble in its attainments, and is still so far from perfection, that it would be an inconceivably stupid blunder to let go a single point that has been gained. Whether At first sight it would seem a wise thing to require health certificates for those who would be married. I doubt not the Chicago Bishop who declined to marry his parishioners except under such conditions, will exert a beneficial effect upon the country by the attention he thus attracts to the subject. It would be a bad day for the city if all the clergy and all the other authorities who are authorized to solemnize marriage should take this step. We have not yet arrived at such a stage of development that a marriage certificate is essential to mating, and a restriction of this sort would simply mean that there could be no legitimate union except of those in strong health. To the burden of ill health would be added There is one taint from which society has the right and the duty of freeing itself, so far as in its power lies. This is the taint of feeble-mindedness. Of all the calamities that can befall a human being, feeble-mindedness is, perhaps, the worst. From most misfortunes it is possible to recover; with most of the rest one may exist without detriment to the race. To be feeble-minded simply means to hark back to the level of our animal ancestors, without regaining their power to guide life. The animal is provided with a bundle of instincts which tell him what to do in all the ordinary emergencies of life. The hu There is one type of mental weakling, known as the Mongolian idiot, which may arise right out of the heart of an apparently sound family. But the number of these is comparatively small. The num In several of the states of the Union it has recently become the practice to remove the possibilities of parenthood from certain classes of criminals. The purpose of this is clear and benevolent. Society has a right to prevent the oncoming of new generations of foreordained criminals. Underlying the practice is the theory that the children of criminals are born criminals. It is far from likely that this is the case. Criminality may be due to a wide range of causes. If the criminal is one of those actual born degenerates whose whole mental and physical make-up is so defective that nothing but criminality can be expected of him, then we have a case in which it is clear that society may, and should, remove the possibility of having more generations of the same kind. Probably only a moderate proportion of the criminals in our jails and penitentiaries belong to this class. Doubtless a distinct majority are criminals more through environment than through heredity. Born of average ability, or more, these people At the recent Eugenics Congress in London one of the speakers expressed a preference for the son of a husky burglar over the son of a tuberculous bishop. This is doubtless quite correct, but why should the bishop be tuberculous? The truth of the matter is, the reverse is more likely to be the case. Personally, I should prefer to be the offspring of a husky bishop. In dealing with criminals, then, with a view to cutting off their posterity, we must be careful to understand whether we are dealing with a hereditary or an acquired criminality. If there is a genuine hereditary criminal taint, society is right in freeing itself of it. If it is acquired criminality, then it is not transmissible, and the offspring, if placed in a good environment, are likely to be good citizens. All of What steps may the eugenist, with his present limited knowledge, clearly, hopefully and confidently take to improve the future of the human species? There is one avenue open to us in this matter in which we can hardly go wrong. Even our mistakes can work little harm, and every well-done piece of work in this field will be a blessing to the race. This step lies in inculcating in our boys and girls high ideals of parenthood. This is more effective than legal prohibition of certain forms of marriage which cannot prevent matings, and adds the curse of illegitimacy to the other handicaps of the children of such unions. The first step in this process has already been reasonably well accomplished. Both our boys and our girls are in love with health. A good husband and a good wife should be healthy and vigorous. This does not mean that we expect a boy or girl who is looking forward to marriage to sit down and ask himself deliberately about the health of the person with whom he would mate. We must fill our children with the love of outdoor life, with the love of exercise. This will foster in them an admiration for people who are vigorous of body and alert of mind. Our aim, however, should not cease with a vigorous body. We must teach our young men and young women the glory of a well disciplined mind. This should seem quite as admirable to them as a vigorous body. To them, straight thought ought to be as lovable as a firm and supple body. In this matter our young people are less exacting. The ordinary conversation of people gathered together for social purposes is not particularly intellectual, and any attempt to make it so at present seems priggish. With a A third feature of the ideals which should be instilled into the minds of our children is the moral phase. There seems little doubt that this is on the way. We must not mistake an evident laxness of religious observance as being synonomous with moral looseness. The revelations which our recent periodicals have brought us concerning the habits of business men, of politicians, and of society, have left on many minds the impression that this is distinctly an age of decadence. Exactly the reverse is the truth. This is the age of intense sensitiveness to wrong. In almost no particular is it worse than any previous age in the history of our country. We openly discuss things which we left untouched a little while ago. We insistently demand that business practices to which nobody particularly objected a dozen years ago must now certainly cease. All of this has produced an erroneous impression that the times are out of joint. But the dust and dirt in the air is the unavoidable accompaniment of house cleaning. When doubtful practices simply have publicity A close acquaintance with thousands of young men and young women running through an experience of twenty-five years has taught me to believe that our young people of to-day are altogether cleaner of mind, of tongue, and of life than were their parents. There is freer, franker discussion of many things that their parents would scarcely have dared mention, yet I feel sure the moral tone is distinctly higher. I look with entire hopefulness to an early season when the young man who asks a woman to share her life with him will be met with the entirely proper question, "Have you kept your life clean for this event?" I believe that unless the answer can be in the affirmative the young woman will not be able to have admiration enough for the young man to cover uncleanness in his life. There is one temporary phase of present life which seems discouraging. The increase in the cost of living, and still more rapid increase in the standard of The best foundation possible for a life of happiness is vigor, ability and good character. For the lack of none of these can wealth properly atone. There is an apparent tendency to waken to the situation. I hope it will come soon enough for our young men and young women to get past a desire for such establishments in life as their parents already have. With this difficulty removed, with our widespread education, with the constant diffusion of both information and ideals from our periodical press I have every hope that the evolution of a new, a finer, and more vigorous race, will come with a rapidity which nothing that the past has done would lead us to expect. CHAPTER XIScience and the Book We of the twentieth century have an overwhelming desire to be up to the times. Nothing but the latest news on any subject will completely satisfy. We are more anxious for late information than for accurate information. We have an almost unconquerable feeling that if it is late it must be accurate. All of us are sensitive to being thought behind the times. We feel that no stigma can be more invidious in the intellectual world than the stigma of being out of date. This pervades the masses quite as strongly as it does the more cultured classes. Under these conditions everybody wants to know the latest theory that science has to offer concerning anything that can be brought within the range of their interests. As a result everybody would like to know about evolution, were it not for the fact that a great mass of people have been brought to believe that there is something inherently irreligious in the idea. Our people have a saving sense of the value of religion. Denominational control may set lightly upon them. It is a most wholesome tendency which leads us to esteem religion as the main interest in life. We must feel a sense of shame when we consciously permit the influences, which most favorably mold our character, to weaken their hold upon our lives. Certainly in our time religion is the essential agent by which character is molded. Any of us would be foolishly short-sighted were he willing to weaken the hold of religion upon his life for the sake of a scientific theory, the truth or falsity of which could have but little practical bearing upon his conduct. We must hold to religion at all hazards. We may, when circumstances so suggest, change our denominational allegiance. We may and often do interpret our faith quite at variance with the ecclesiastical body with which we are connected. We may constantly modify and develop our beliefs. But it is a pitiful life which has lost the staying and strengthening influence of religion. I believe this conviction is deep-rooted in the minds of our people and that it deserves the place it holds. To a mind thus essentially religious the announcements of science often come as a shock. They seem The other course is to have faith both in religion and in science. Such a fair-minded man must ask himself, what is the truth in the matter? If the scientific fact is true it is to be believed. It may run counter to what we have believed before. It may seem at first entirely incredible. But when once he becomes convinced of its truth the clear thinker must not only accept it, but must accept all legitimate deductions from it. If it seems true to us we must believe it. Absolute demonstrable truth, except in the simplest of matters is almost unattainable. The best we can ordinarily As to the truth of geology we are certainly wise to accept for the present the facts and principles commonly accepted by competent geologists. In biology, we should respect the concurrent opinion of important biologists. We must not assume that a few biologists who think as we do are right against the biological world, or that a few geologists who think as we do are right against the geological world. For theology, we had better go to the educated theologian. But when it comes to reconciling two of these and to catching the inherent correspondence between them, it is often likely that each of these groups of men is unable to see clearly the view-point of the other. Here lies our freedom. Here we must either think for ourselves or think with those wiser than ourselves whose opinions seem to us to ring true and to focus for us our wavering and uncertain thought. Among students of animals and plants there is no longer any question as to the truth of evolution. That the animals of the present are the altered animals of the past, that the plants of to-day are the The working biologists of the world have no doubt. They differ radically as to what brought about this change, they dispute vigorously as to the rate of change, but as to the fact of the change there is no difference of opinion. Under these conditions the thinking man is out of joint with the times when he sets himself against the idea of evolution. He may be so immersed in other lines as to be indifferent to the problem; but when he is hostile to it, he marks himself as clearly against his day. Many have been against their day and have been right. Very great men have often been against the opinions of their times and have come to be leaders of the world's later thought. But ordinary men in ordinary times who think differently on a special subject from the specialists of the times are not very likely to be right. It is safe for most of us to accept as true an opinion on which specialists on that subject agree. It seems clear to me then that the thinking man to-day has in the matter of evolution a double duty. He must become reasonably acquainted with the theory that Truth is true no matter how it is acquired. There can be no doubt as to the essential truth of religion: its fruits proclaim its worth. There can be no doubt as to the essential truth of evolution; the clarity it has brought into the sciences is the evidence of the value of the conception. That it will persist in its present form, that it will be unchanged by later additions to our knowledge is of course unthinkable. It may be incomplete, it may be undeveloped, but so far as it goes it contains the truth. Under these conditions, how can we bring peace into our own mind? These two important provinces seem so often to be at variance. The difficulty may lie in one of two places. In the first place, each truth may be stated in terms so peculiar to its own subject as to convey no meaning to the student of the other branch. There is a second, and more harassing possibility. The same words may be used by students in each branch but each side may put a different significance into the terms. Then each believes he understands the other, when he really does not. It seems to me if we are to understand, in conformity with the thought of the age, any particular book in the Bible, there are three steps through which we must pass. We must first ask ourselves the kind of people to whom the book was originally written. We must know their habits of life and of thought. Until this is clear in our minds the book can have little significance. Having built up as nearly as may be the life and thought of the time, we must next decide what is the inherent truth taught to the people of that time by the book under consideration. Much that is written must be simply the setting in which alone that truth could reach them. This extraneous detail gives vigor and color to the message but is not the message itself. The last step and the hardest one to take, the one that to some minds seems almost irreverent, is to decide the form that message must take to-day to convey to our minds the same truth which the original message conveyed to the people of its time. In so far as we succeed in taking these When Paul in his first burning letter told the Corinthian congregation that their women should be silent in their churches, he is not, it seems to me, giving a message which in those terms applies to the world to-day. If a woman has anything that is worth saying she has a perfect right to say it in church. In any denomination in which religious observance is not ecclesiastically formal she will be allowed that privilege. By an interesting peculiarity of mind on our part she may be permitted to do so upon Wednesday evenings, when our early prejudice still prevents her speaking on Sunday. What is the truth of the teaching of Paul in this matter? The Christians of Corinthian times had already begun to suffer from persecution. They were already despised and distrusted. Men had come to speak ill of them. Paul's injunction concerning the silence of women in churches was simply an injunction against their doing those things which in the thought and habit of those times were associated generally with looseness of character. Fine Corinthian women did not speak in public. A woman who would consent to speak before a group of men of Corinth of that day would by that fact have proclaimed herself a woman of loose morals. Paul's injunction is that, in this desperate strug In similar fashion we have changed most beautifully the message which we have come to love, as the Mizpah message: "The Lord watch between thee and me while we are absent one from the other." We have absolutely transformed and glorified the message. It was once the calling down of the wrath of Jehovah upon one or other of two herdsmen if either of them should fail to comply with the agreement to remain within his own boundary. These men whose herdsmen were constantly stealing each other's cattle agreed to separate because they could not live in unity. They set up a heap of unhewn stone, and called upon God to guard and to see that neither of them passed beyond the boundary of the other. What was once a threat between warring herdsmen has become a binding link between Christian brothers. No longer do we call upon the Lord In the light of the principles stated above, what is the essential truth that lies back of the earliest chapters of Genesis? First, that there is one God. Slowly it had been borne in upon the Hebrew mind as upon no other tribe in the world that the Lord God is one God. Nearly all the world besides believed in many gods. Each nation had a God peculiarly its own, each city had a minor god caring for it particularly. There were gods of the woods, gods of the oceans, gods of the streams. Gods and goddesses were everywhere. To this people wandering through the terrible monotony of the sandy desert, the "Garden of Allah," there came the inspired comprehension of the eternal oneness of Almighty God. First, he was to most of them the God of the Hebrew, stronger than the gods of the nations. After a while under the teaching of prophet after prophet there finally came to the entire nation the exalted conception that God is one and there is no other God. This is one of the imperishable revelations of all time. Beside this, all suggestions of fifth or sixth day, of hours or of ages The second truth which seems to me to underlie this magnificent parable of creation is the truth that this great God has created the universe and that he cares for his people. Gods before had been objects of terror. Gods before had lived lives such as the people themselves would not have respected among their companions. Gods before were to be shunned. If one could but escape the attention of the gods it was his greatest good fortune. Now we have the conception of an all-knowing, ever-present God to whom his people are dear. The terms in which it was stated in those days matter but little. To modern psychologists even the idea that people are dear to God seems speaking too humanly. Yet the truth involved must come in terms that the people of to-day understand. We can best comprehend God if we think of Him as loving and chastening, even though down in our hearts we know that these terms are not high enough, are too human to apply to an Eternal God. But we know no better and they tell us the truth even though the terms may in time pass completely away. Does this mean that Genesis has served its purpose and is to-day to be conceived of as a beautiful relic of the past, to be reverently enshrined but not seriously accepted? Far from it. The glory of the Genesis story lies in its wonderful power to grow. It strength Perhaps the most severe shock that has come to the mind of religious man from the teachings of science has been the at first almost unsupportable idea that man is the descendant of creatures of which the ape is to-day the nearest representative. He had learned from Genesis the altogether adorable conception that he was made in the image of his Maker. It lifted him; it strengthened him; it gave him more power to struggle. He might know that he had marred that likeness by wrong-doing, he might understand that the fullness of the glory of God's image could not shine through his own face. Yet he believed that he was, in spite of all his imperfections, made in the image of his Maker. Now comes this horrible linkage with a miserable brute to either shock and confound him or to degrade him. We can easily imagine, some of us have bitterly experienced, the shock of this changed conception. But it was only because we mistook the clothing for the truth in both cases. We read science in its own terms; we read Genesis in its own terms. They did not use the same language and they jarred us to the very soul. Slowly, however, we are coming out of the darkness of that battle; slowly the glorious light of the beauti Michael Angelo painted a wonderful picture of "The Judgment." Here, seated upon a throne, which after all is only a magnificent chair, sits a venerable figure of what is really but a nobly-proportioned man, to whom the nations come for their final reward. He separates the righteous from those who must forever be sundered from their God. Seen through the distant past it still remains a majestic picture; but no painter would think of repeating its conception to-day. Quite in the modern spirit is the beautiful lunette which John Sargent placed in the Boston Library, above his well known frieze of "The Prophets." It represents "Jehovah confounding the gods of the nations." The naked figure of suppliant Israel stands before an altar of unhewn stones, on which burns the sacrifice. The smoke ascends to Heaven. On one side stands the mighty figure of Assyria with uplifted mace ready to strike its awful blow upon the shoulders of helpless Israel. On the other side the lithe, subtle form of Egypt, clasping the knout, watches its chance to bring its treacherous thong upon the helpless shoulders of suffering Israel. But Jehovah may not appear, man may not look on God and live. Jehovah is seen as a glory behind the cloud of smoke shrouded by winged cherubim. From one Again we understand that we are made in the image of our Maker. Again we understand the power of the uplift of this idea. From the conflict it has emerged in new and glorified form. Hath a God eyes that he may see? Hath a God ears that he may hear? Hath a God hands that he may work? These we know to be but human forms of speaking. Eyes, ears, and hands we may owe to the brute from whom we have sprung; in our eyes and ears and hands we show the relationship we bear to them. These are not the image of God. God is a deeper, a finer, a nobler something than hands, than ears and eyes. The image of God lies within ourselves: the image of God is that which makes us what we are. In every noble purpose, in every earnest endeavor to uplift ourselves or our fellowman, in every thought that turns us from the evil of a repented past, in every desire with which our hearts yearn to strengthen, support and sustain our friends and even our enemies, shines forth the image of Almighty God. This it is that links us with the Eternal: this it is that makes it worth while that we should be Eternal. Besides this what are hands and ears and eyes? We A word in closing. The time is ripe for a broader conception of theology and of science on the part of those who are not trained to be specialists in either. We are becoming more and more inherently religious. We are becoming more and more enamored of the truth in all its forms. The times are ripe for us to cease the struggle and to strive for peace. So long as men insist that the important things in faith are the things on which men differ there will be eternal strife. So soon as men endeavor to find the common ground between them and each tries to state his belief in forms acceptable to himself but involving no hostility to his neighbor, we shall be working for peace. Some of our finest men of to-day are being trained in modern science and in modern theology. There is no scorn in their minds for early science or for early theology. Each served its age, and each taught its truth. But its truth must be restated in terms of to-day. The old creeds will always be loved. The old creeds will always hold our reverence and allegiance. But each age must be at liberty to interpret these creeds in the terms in which that age best understands truth. Each age must be at liberty "to restate the doctrines of the past in accordance |