A vast abundance of objects must lie before us ere we can think upon them.
Goethe.
The young have a strong appetite for reality, and the teacher who does not make use of that appetite is not wise.
J. S. Blackie.
The child’s restless observation, instead of being ignored or checked, should be diligently ministered to, and made as accurate as possible.
Herbert Spencer.
What do you read, my lord?
Words, words, words.
Hamlet.
You have an exchequer of words, and I think no other treasure.
Two Gentlemen of Verona.
III
THE MATERIALS OF THOUGHT
Words without thoughts.
The hotel man was right in his criticism of teachers who expect their pupils to make an intellectual meal on mere words. For three hundred years educational reformers have been hurling their epithets against this abuse. Has it been banished from the schools? By no means. It crops out anew with every generation of teachers and in every grade of instruction from the kindergarten to the university. During the years in which a child acquires several languages without difficulty, if it hears them spoken, the mind is eager for words and often appropriates them regardless of their meaning. The child learns rhymes and phrases for the sake of the jingle that is in them, and cares very little for clearly defined ideas and thoughts. So strong and retentive is the memory for words that the child finds it easier to learn by heart entire sentences than to think the thoughts therein expressed. Like a willing and obedient slave, the verbal memory can be made to do the work of the other mental powers. The merest glimpse at a picture may recall all the sentences on the same page, so that the pupil can repeat them with the book closed or the back turned towards the reading chart. The recollection of what the ear has heard may thus relieve the eye of its function in seeing words, degrade the child to the level of a parrot, and thereby greatly hinder progress in learning to read. Very frequently the memory is required to perform work belonging to the reflective powers, because the learner is thereby saved the trouble of comprehending the lesson and expressing its substance in his own language. Moreover, the accurate statement of a truth is apt to be accepted as evidence of knowledge and correct thinking. The average examination tests very little more than the memory. If the answers are given in the language of the text-book or the teacher, the examiner seldom supplements the written work by an oral examination. Thus there is a constant tendency on the part of teachers and pupils to rest satisfied with correct forms of statement; and the pernicious custom of feeding the mind on mere words is encouraged and perpetuated. Exposed in plain terms, this abuse of words is condemned by everybody; yet it is as easy at this point to slide into the wrong practice as it is to fall into the sins forbidden by the decalogue. Like Proteus, this abuse assumes diverse and unexpected forms; instance after instance is needed to put young teachers on their guard and to expose its pernicious effect upon methods of instruction and habits of study. To cry “words, words, nothing but words,” will not suffice to correct the evil, for words must be used in the best kind of instruction. Line upon line, precept upon precept, example after example is needed to expose the folly of learning words without corresponding ideas, of teaching symbols apart from the things for which they stand. No apology is needed for citing laughable and flagrant instances in point; ridicule sometimes avails where good counsel fails.
Spelling.
A superintendent who advocates spelling-bees and magnifies correct orthography out of all proportion to its real value startled a class in the high school by asking for the spelling of a word of five syllables. Not receiving an immediate answer, he referred to the Greek. This made the spelling easy for at least one pupil. A year later he accosted this pupil, saying, “You are the only person that ever spelled psychopannychism for me.” “What does it mean?” was the question flashed back at him in return for his compliment. He could not tell, because he did not know. For years he had worried teachers and pupils with the spelling of a word whose meaning he had failed to fix accurately in his own mind.[2] What more effective method could be devised for destroying correct habits of thinking?
Eyesight.
There is a time in the life of the child when it is hungry for new words. The habit of seeing words accurately and learning their spelling at first sight is then easily acquired, provided there is no defect in the pupil’s eyes. In cases of defective eyesight the first step towards the solution of the spelling problem, as well as the first condition in teaching the pupil to think accurately, is to send him to a skilled oculist (not to a so-called graduate optician or doctor of refraction, who must make his living out of the spectacles he sells, and whose limited training does not enable him to make a correct diagnosis in critical cases). Correct vision will assist the pupil not merely in learning the exact form of the words which he uses in writing, but also in forming correct ideas of the things with which the mind deals in the thought-processes. Although great stress should be laid upon the orthography of such words in common use as are frequently misspelled,—daily drill upon lists of these should not be omitted at school while the child’s word-hunger lasts,—yet it is vastly more important to acquire an adequate knowledge of the ideas, concepts, and relations for which the words stand. To spend time upon the spelling of words which only the specialist uses, and which are easily learned in connection with the specialty by a student possessing correct mental habits, is a form of waste that cannot be too severely condemned. It is far better to spend time in building concepts of things met with in real life.
The meaning of very many words is, of course, learned from the connection in which they occur. This, however, is not true of sesquipedalian words like the one mentioned above, nor of the technical terms by which science designates the things that have been accurately defined or quantified.
Fundamental ideas.
Technical terms are used to denote the ideas which lie at the basis of science. These fundamental ideas are appropriately called basal concepts. Since basal concepts cannot be transferred from the teacher’s mind to the pupils’ minds by merely teaching the corresponding technical terms, they must be developed by appropriate lessons. If this be neglected, there may be juggling with words and a show of knowledge; but close, accurate thinking is impossible. This seems to be so self-evident that one would hardly expect to meet violations of such a simple rule in the art of teaching. And yet it is related of the professor of physics in one of our largest universities that he began his course of lectures in this wise: “A rearrangement of the courses of study deprived you of the usual instruction in elementary physics. That is your misfortune, and not my fault.” Thereupon, he began his lectures on advanced physics as if the preparation of his class to think the concepts at the foundation of his science could be ignored without detriment to the progress of the student, as if confused minds and unsatisfactory thinking were not the inevitable outcome of juggling with technical terms apart from the concepts which they denote. A master in the art of teaching would have started on the plane occupied by the students. By development lessons he would have lifted them to the plane of thought on which he intended to move. He would have considered their mental progress of more consequence than the course of lectures which he was in the habit of delivering. The student, and not the study, should have held the chief place in his professional horizon.
Abuse of text-books.
In another State university the professor of physics applied to an influential member of the board of trustees for an appropriation for apparatus. “Teach what is in the text-book; then you will not need apparatus,” was the reply. It seems almost incredible that a trustee of a modern university should fail to see the difference between an experiment actually performed and a description of the experiment in a text-book. More incredible still does it seem when we hear of professors who see no difference between an experiment made in the presence of a student and an experiment made by the student himself.
Apparatus and experiments.
Agassiz.
Pictures of apparatus and descriptions of experiments should, of course, not be despised or neglected. They are helpful in forming concepts of that which cannot be brought before a class. When made by the learner himself, as a result of his own work, they serve to clarify his thinking, and furnish a sure test of the pupil’s progress and of the teacher’s skill as a guide and instructor. A drawing, or even a statement in the pupil’s own words, is often an astonishing revelation of the crude notions which pictures give. The city lad who said that a cow was no bigger than a finger-nail because he had often measured its size in the First Reader is a typical example. The ability to interpret pictures and descriptions comes from actual knowledge of things similar to what is depicted or described. The noted teacher, Agassiz, made a difference in his directions to beginners and advanced students. To the former he would give specimens, with directions to study them without referring to a book. Having taught them how to use their eyes, he would gradually lead them to the method of interpreting and verifying the statements of an author. And when the advanced student was set to work at original investigations, he was told to study certain books, as it would save much valuable time. One of his pupils writes, “I shall never forget a forceful lesson given me by the great Agassiz, when I studied with him in the Museum of Cambridge. I worked near a young man from Cleveland, Ohio, who has since achieved distinction as a teacher of biology. I was comparatively a beginner, however, while he was well advanced in his studies. On a certain day Agassiz came sauntering by, and stopped long enough to tell me not to use the library so much, but to confine myself to observations of the specimens on hand and the writing of my observations and comments. Passing on a little farther, he spoke to my friend and said, ‘Albert, when you go home, this summer, to Cleveland, I wish you would make a special study of a certain kind of fish found in the harbor there. It is not found plentifully anywhere else in the world. Take a row-boat and go three hundred yards northeast of the point of the breakwater, and you will find them in abundance. Before going home, get the only three books ever written on this fish from the library here and read them. It will save your time to read them before beginning to study the fish itself.’”[3] Agassiz was as anxious to teach the right use of books as is the professor of literature; but he adapted his directions to the degree of advancement which his students had attained, and did not neglect the formation of the basal concepts and the habits of study needful in the sciences he taught.
Botany.
How little the exhortations of our educational reformers have been taken to heart by some teachers is evident from the recent experiences of a normal school principal, who had great difficulty in finding a satisfactory teacher of botany. The students could invariably answer the questions of the State Board of Examiners by filling pages of manuscript with technical terms. In the field they could not distinguish one plant from another. In despair, the principal said to his teacher of psychology, “Why can we not apply common sense to the teaching of botany? Can we not plant seeds, watch their growth, and study the growing specimens instead of the pictures in a text-book?” “If you will give me the class in botany, I will try it,” was the reply. Before the next class took up botany, every chalk-box was emptied and every flower-pot utilized in the planting of seeds. In no long time there appeared on the fences of neighboring farms sign-boards with the inscription, “Trespassing on these fields is forbidden, under penalty of the law.” The members of the class were traversing the country, studying the real flowers, the growing plants, instead of the technical terms of a text-book. At the next final examination, the herbarium which each one had prepared, together with the accompanying analysis and drawings of parts which could not be described, including colorings in imitation of the actual colors of the flowers, gave evidence of real knowledge, and served to satisfy the examiners, although the array of technical terms was far less formidable.
If violations of the fundamental laws of teaching occur in our higher institutions of learning, what may we not expect in the lower schools where the teaching is intrusted to young people of limited education? Nevertheless, it is a notorious fact that the worst forms of teaching are found in our higher institutions of learning, where many of the professors seem to know as little of the science of education as the motorman knows of the science of electricity; otherwise they would make impossible the use of “ponies, coaches, and keys,” by means of which the student taxes the memory rather than the understanding, and ultimately loses all power of independent thought and investigation. Such helps arrest mental development, destroy the power of original thinking, and do more harm than the practice of feeding the mind with mere verbal statements which in course of time may acquire content and meaning. The study of the sciences which classify minerals, plants, insects, birds, fishes, and other animals may degenerate into a mere study of words, even when the student acquires some familiarity with the specimens to be classified. The scientific name is the one thing about a flower with which the Creator has had nothing to do, and if the recognition of the scientific name is the chief or sole aim of the student of botany, it is a genuine case of feeding the mind on words.
Words as material for thought.
Geometry as thought-material.
By those who are fond of scientific pursuits the dead languages are sometimes despised as though the study of them were learned playing with mere words. Among people who begin their education somewhat late in life there is a strong temptation to estimate linguistic studies very far below their true value as a means for disciplining the reasoning faculty. When pursued in the right way, the study of the classical languages furnishes as much good material for thought as the natural sciences. Huxley may charm an audience by a lecture on a piece of chalk; the philologist can excite equal interest by a lecture on the word chalk. Words grow and undergo changes according to well-defined laws which furnish as much food for thought as the laws governing the union of atoms or the motions of the heavenly bodies. The words of a lexicon contain as much of precious interest in the sight of man as the manufactured gases or the plucked leaves and dissected flowers of the laboratory. Greek and Latin roots have more vitality in them than the collections of stones, stuffed birds, and transfixed bugs in the museum. The endings of nouns, adjectives, pronouns, and verbs furnish ample opportunity for observation, comparison, and reflection; their functions in the syntax of the sentence furnish splendid exercises in formal and qualitative thinking. If, however, the time of the pupil is entirely consumed in mastering the hundreds of exceptions to the rules of gender and case, of declensions and conjugations, of syntax and prosody, it is another sad instance of feeding the mind on mere words. The pupil who begins the study of any foreign language before he has reached his teens should acquire the power to read the language at sight; otherwise there has been something faulty in the methods of teaching or of study, or in both. A man is as many times a man as he knows languages; and the comparison of the idioms of two or more languages furnishes most excellent material for careful and accurate thinking. In translating an author like Plato the student must think the thoughts of a master mind, weigh words so as to detect the finer shades of meaning, and arrange them in sentences that shall adequately express the meaning of the original. The value of pure mathematics, especially the Euclidian geometry, as a means for the cultivation of thinking, lies in the limited number of fundamental concepts which must be clearly fixed and in the nature of the reasoning by which the truth of the theorems is established. The axioms are few in number and easily grasped; the quantities to be defined can, without difficulty, be set in a clear light before the understanding; the chain of proof compels the mind to join ideas by their logical nexus, and if the learner persists in memorizing the demonstration, he is at once detected. And yet when, as sometimes happens, he goes over several books of geometry without clearly perceiving the difference between an angle and a triangle, it must be a genuine specimen of acquiring words without the corresponding ideas.
S. S. Greene’s views.
The words of S. S. Greene deserve the attention of every teacher anxious to prevent the formation of vicious habits of thought by the pupils in our schools and colleges. Years ago he wrote as follows: “While an external object may be viewed by thousands in common, the idea or image of it addresses itself only to the individual consciousness. My idea or image is mine alone,—the reward of careless observation, if imperfect; of attentive, careful, and varied observation, if correct. Between mine and yours a great gulf is fixed. No man can pass from mine to yours, or from yours to mine. Neither, in any proper sense of the word, can mine be conveyed to you. Words do not convey thoughts; they are not vehicles of thought in any true sense of that term. A word is simply a common symbol which each associates with his own idea or image. Neither can I compare mine with yours, except through the mediation of external objects. And, then, how do I know that they are alike; that a measure called a foot, for instance, seems as long to you as to me? My idea of a new object, which you and I observe together, may be very imperfect. By it I attribute to the object what does not belong to it, take from it what does, distort its form, and otherwise pervert it. Suppose, now, at the time of observation we agree upon a word as a sign or symbol of the object or the idea of it. The object is withdrawn; the idea only remains,—imperfect in my case, complete and vivid in yours. The sign is employed. Does it bring back the original object? By no means. Does it convey my idea to your mind? Nothing of the kind; you would be disgusted with the shapeless image. Does it convey yours to me? No; I should be delighted at the sight. What does it effect? It becomes the occasion for each to call up his own image. Does each now contemplate the same thing? What multitudes of dissimilar images instantly spring up at the announcement of the same symbol!—dissimilar not because of anything in the one source whence they are derived, but because of either an inattentive and imperfect observation of that source, or some constitutional or habitual defect in the use of the perceptive faculty.”
Dr. J. P. Gordy, to whom credit is due for the preceding quotation, further says, “Words are like paper money; their value depends on what they stand for. As you would be none the richer for possessing Confederate money to the amount of a million dollars, so your pupils would be none the wiser for being able to repeat book after book by heart, unless the words were the signs of ideas in their minds. Words without ideas are an irredeemable paper currency. It is the practical recognition of this truth that has revolutionized the best schools in the last quarter of a century.... In what did the reform inaugurated by Pestalozzi consist? In the substitution of the intelligent for the blind use of words. He reversed the educational engine. Before his time teachers expected their pupils to go from words to ideas; he taught them to go from ideas to words. He brought out the fact upon which I have been insisting,—that words are utterly powerless to create ideas; that all they can do is to help the pupil to recall and recombine ideas already formed. With Pestalozzi, therefore, and with those who have been imbued with his theories, the important matter is the forming of clear and definite ideas.”[4]
Sight and insight.
It was a remark of Goethe that genius begins in the senses. With equal truth we may say that thinking begins in the senses. Like unto the genius, the thoughtful man perceives and interprets what has escaped the notice of other people. To sight he adds insight. That which he sees is subsumed under the proper class or category, and is viewed from different sides until its significance is discovered, and a place is assigned to it in the intellectual horizon and in the external world. Every fact thus seen in its relation to other facts serves as a basis for further observation, reflection, and comparison. Not merely the genius, but every other person whose thinking is above the average in vigor and accuracy, has the power to perceive things which escape the eyes and ears of other people. Through habits of careful and correct observation he fills his mind with images, ideas, concepts of the objects of thought and of the relations which exist between these objects, and thereby acquires the materials for the comparisons which constitute the essence of good thinking. If the strength of a student is exhausted in gathering and storing the materials for thought, his mind becomes a wilderness of facts; if he reasons without the facts, his conclusions are more unreal than the figments of the imagination.
Truth the proper thought-material.
Truth is the best thought-material for the mind to act upon. The possession of truth is the aim and the goal of all correct thinking. Knowledge of the truth implies the conformity of thinking with being. The world within should be made to correspond with the world outside of us.
The laboratory and the library.
Aristotle.
Fortunately, the self-activity of children is towards the objective world of things which they can see, hear, smell, taste, and handle. From inner impulse their thinking is directed towards the cognition of objects. One of the functions of nature study is to beget habits of careful and accurate observation. This is a characteristic feature of the laboratory method as distinguished from the library method. A training in both is essential to a complete education. The library stores the treasures of knowledge which the human race has gathered and makes them accessible to the learner. The laboratory shows him by what methods truth is discovered and tested and verified. The German professor who declined to visit a menagerie, asserting that he could evolve the idea of the elephant from his inner consciousness, may have spent much time in reading books and in speculation; but he certainly never worked in a laboratory; nor had he taken to heart the lessons which he might have learned from the sages of antiquity. Aristotle knew the importance of asking nature for facts, and he induced his royal pupil, Alexander the Great, to employ two thousand persons in Europe, Asia, and Africa for the purpose of gathering information concerning beasts, birds, and reptiles, whereby he was enabled to write fifty volumes upon animated nature. After teachers had forgotten his methods they still turned to his books for the treasures which he had gathered. In the ages in which men hardly dared to ask nature for her secrets, fearing that they might be accused of witchcraft, they turned to Aristotle as if he were an infallible guide—so much so that when Galileo announced the discovery of sun-spots a monk declared that he had read Aristotle through from beginning to end, and inasmuch as Aristotle said nothing about spots on the sun, therefore there are none. This book-method of studying science has not entirely disappeared from the seats of learning. Books like Tyndall’s “Water and the Forms of Water,” Faraday’s “Chemistry of a Candle,” and Newcomb’s “Popular Astronomy” may, indeed, be read or studied as literature, and thus prove a means of culture; but to accept the facts and statements of a text-book without verification is the lazy man’s method of studying science; and as a method it fails to lay the foundation upon which a solid superstructure can be built. The correct method starts with observation of the things to be known, develops the basal concepts which lie at the foundation of the science under consideration, ends by teaching the pupil how to make independent investigations, how to utilize the treasures which have been preserved in our libraries, thereby furnishing an adequate supply of proper materials for thought.
Productive minds.
The habits of men who have surprised the world by their intellectual and professional achievements are very suggestive. Spurgeon kept his mind filled by constant reading. Goethe was fond of travel and utilized what he learned from others. Emerson visited the markets regularly, conversed with the men and women from whom he bought, and sought to learn their views on current events. Study the greatest thinkers the world has known, and you will find their memories to have been a storehouse of thought-materials which they analyzed, sifted, compared, and formulated into systems that win the admiration of all who love to think.