For some time back I have felt the want, among Students of Drawing, of a written code of accurate Perspective Law; the modes of construction in common use being various, and, for some problems, insufficient. It would have been desirable to draw up such a code in popular language, so as to do away with the most repulsive difficulties of the subject; but finding this popularization would be impossible, without elaborate figures and long explanations, such as I had no leisure to prepare, I have arranged the necessary rules in a short mathematical form, which any schoolboy may read through in a few days, after he has mastered the first three and the sixth books of Euclid. Some awkward compromises have been admitted between the first-attempted popular explanation, and the severer arrangement, involving irregular lettering and redundant phraseology; but I cannot for the present do more, and leave the book therefore to its trial, hoping that, if it be found by masters of schools to answer its purpose, I may hereafter bring it into better form. An account of practical methods, sufficient for general purposes of sketching, might indeed have been set down in [px] much less space: but if the student reads the following pages carefully, he will not only find himself able, on occasion, to solve perspective problems of a complexity greater than the ordinary rules will reach, but obtain a clue to many important laws of pictorial effect, no less than of outline. The subject thus examined becomes, at least to my mind, very curious and interesting; but, for students who are unable or unwilling to take it up in this abstract form, I believe good help will be soon furnished, in a series of illustrations of practical perspective now in preparation by Mr.Le Vengeur. I have not seen this essay in an advanced state, but the illustrations shown to me were very clear and good; and, as the author has devoted much thought to their arrangement, I hope that his work will be precisely what is wanted by the general learner. Students wishing to pursue the subject into its more extended branches will find, I believe, Cloquet’s treatise the best hitherto published. Several constructions, which ought to have been given as problems, are on the contrary given as corollaries, in order to keep the more directly connected problems in closer sequence; thus the construction of rectangles and polygons in vertical planes would appear by the Table of Contents to have been omitted, being given in the corollary to ProblemIX.] |