The ignition devices commonly employed may be divided into three main classes—the metal tube, the porcelain tube, and the electric ignition. These again may be subdivided: The first being either iron or nickel (hecknum as they are sometimes called); the second are of two kinds—single-ended and double-ended; and the third takes many forms which many of my readers are possibly well acquainted with, such as the magneto, the induction coil and trembler, and the high-tension magneto ignition, the latter device having been used successfully on various occasions, though not yet universally adopted. The first-named have one or two advantages over the nickel tube. They are very inexpensive, and are easily heated to the required temperature; moreover, they can be made at home, should occasion demand. On the other hand, they are not so durable, have a very uncertain life, and consequently need renewing frequently—their average life being Fig. 13. Fig. 14. Fig. 15. The asbestos lining, shown in fig. 13, may be of various thicknesses, according to the size of the chimney and the tube; the reason for this will be apparent to many; but being a most important factor in the heating of the tube, and consequently the working of the engine, it will be advisable to deal with this point more fully. Due mainly to the peculiar behaviour of iron tubes under heat and internal pressure, it is always advisable to look to them first of all when the engine shows signs of missing fire; and to always examine the bore of a fresh one, and ascertain that it is perfectly clear before putting it in. The adjustment of the ignition tube, although one of the most important and necessary to be made on the whole engine, is in itself a perfectly simple matter. It must be understood that the ignition tube cannot, with the ordinary means at our disposal, be kept at too high a temperature; but it must not be assumed that either the size of the flame, or the time the flame has been alight, is conclusive evidence that the tube is, or ought to be, sufficiently hot to fire the charge successfully. It is an uncommon If such is the case with you, reader, you may very rightly assume that the burner is not properly adjusted, and so does not give the right kind of flame. In order to get the hottest possible flame, the quantity of gas and air must be mixed in the right proportions. A common fault is that there is too much gas allowed to flow through the nipple, compared with the amount of air being drawn in at the air aperture, fig. 13. The result is, we get a flame of great length, but one which is not at all suited to our requirements; and instead of giving up its heat to the tube and the asbestos lining of the chimney, a large amount of gas we are presumably burning in the chimney is not being burnt there at all, for, on applying a light just above the chimney top, a quantity of this gas we are wasting will be seen to burn with a flickering blue flame. To put matters right, it is necessary to do one of two things—either cut down the supply of gas or increase the air-supply. Providing the air aperture is normal, i.e., the same size as it was originally, it is better to adjust the gas, which may be done by tapping up the nipple N, as indicated in the enlarged sketch, fig. 14, until just the right amount of gas can flow. As a rule, if there is too much air, the flame will burn with a loud roaring noise, and is liable to fire back. The nipple should then be opened out with There is no need to use anything beyond a touch of oil when putting in a new tube, in order to make a perfectly tight joint; white or red lead are quite unnecessary, and are liable to make it a troublesome matter to remove the tube on future occasions. Neither should undue force be applied when putting in new tubes; it is liable to wear the thread in the firing block, which results in a partial stoppage of the ignition hole, as indicated in fig. 15. This is especially the case if we happen to get hold of a tube with its screwed part slightly smaller than usual. The asbestos with which the chimney is lined should be about 1/8 in. thick, and, when renewing, the same thickness should be used as originally. A thicker board will reduce the annular space round the tube, and will have a choking effect on the flame—much the same as referred to above, when there is too much gas and not enough air. A simple method of lining the chimney is to cut a block of wood to the inside dimensions of the chimney, less 1/4 in. in width and thickness, then soften the asbestos cardboard by immersing in water, and bend it round the wood, cutting off to the required size, i.e., till the two edges form a neat butt joint. It can be allowed The nickel or hecknum tubes are treated in the same manner as the iron, but, as we mentioned before, are more durable, but require more heating to get them up to a workable temperature. Their greater first cost is compensated to some extent by makers in some cases guaranteeing them for six months. Of the porcelain ignition devices, we will deal with the double-ended tube first, it being the more commonly used of the two in this country. This form of tube is usually about 3 in. long, 1/2 in. diameter, and open at both ends. It may be mounted in a metal casting, in form not unlike the small gas stoves for heating soldering irons. It is heated the greater part of its length by a couple of rows of gas jets, and is frequently surrounded by The single-ended porcelain tube is not so well known here as on the continent; why, we cannot say; certainly it is preferable in every way. We give a few illustrations, showing the method of using this tube. Figs. 16 and 17 show the general arrangement of tube and chimney and the manner in which they are fixed to the cylinder. The device consists primarily of three parts—the body or chimney B, the cover C, and the tube itself T. The body is a light iron casting, carried by a couple of studs SS, which are either screwed into the firing block F, or direct into the metal of the cylinder casting if no firing-block is used; the latter may very well be dispensed with in the smaller-sized engines. The tube is made of thin porcelain, slightly bell-mouthed at its open end, and is mounted in a thick metal washer W, as shown in fig. 18 in section, the joint being made with a little asbestos paper, moistened. The block F and the face of the body B (fig. 16) are recessed to take the washer W easily, but the depth of both recesses taken together must be about 1/16 in. less than the thickness of the washer W; thus, when the tube is placed in position between the body B and the block F, and the former screwed up by means of the two nuts, as shown in the figure 16, the effect is to clamp the washer which carries the tube, but not the porcelain tube itself. The latter is left perfectly free to expand; and yet, owing to its particular shape, the pressure in the cylinder during the compression and explosion stroke only tends to make the joint between the tube and washer more secure. The action of this ignition device depends upon the tube heater H, which is merely a small bunsen burner, the flame of which impinges on the tube at one particular spot, raising it to a very high temperature—almost white heat. Most of my readers will know the formation of the bunsen flame. It in composed of two distinct zones. The inner one, marked A in fig. 18, is a perfectly cold part of the flame, and appears to be a pale-blue coloured cone. It is the outer zone which is the hot portion of the flame, hence this part only must be allowed to play on the tube. The tip of the blue cone A must be kept about 1/4 in. below the tube, in order to ensure the hottest part of the flame impinging precisely where the heat is required. The total length of the whole flame is, to a certain extent, immaterial; but, generally speaking, it should be adjusted so that the length of the inner cone A is about 1 in. or 1-1/4 in. The same methods which we described in the early part of this chapter can be employed in the adjustment of this burner, but some care should be exercised to get the correct flame length. The result of allowing the cold part of the flame to impinge on the tube is observable in fig. 18. The black spot indicated on the drawing actually appears as a black or sooty spot when looking at the tube under these conditions; but in reality no discoloration whatever takes place, the spot The adjustment of the length of cone A may be accomplished in two ways—(1) by keeping the supply of gas constant, and varying the amount of air admitted at aperture K, fig. 18; (2) by keeping the supply of air constant, and varying the amount of gas admitted through nipple N. The first method is to be preferred when it is necessary to make any slight adjustment due to the variation of gas pressure during the day, and may be accomplished by fitting a small sliding shield G, as shown in the figs. 16 and 17, and moving it round so that it covers, more or less, the aperture K. Thus the length of cone A may be adjusted to a nicety in a very few seconds. This shield keeps all draughts and puffs of wind from the fly-wheel away from the aperture, and helps the flame to burn very steadily. In the first place, of course, the flame will be regulated by opening out or tapping up the nipple N (an enlarged sketch of which is given in fig. 14), so that cone A is just about 1-1/4 in. long when air aperture is full open; but once this is done, any future adjustment can be made by throttling the air-supply, or raising or lowering the burner bodily, the set screw keeping it in any desired position (see fig. 17). From the foregoing remarks it will be seen that the most noteworthy features of this form of ignition |